

Programmable Bandwidth

Features

- 200 Mbps 1.5 Gbps, 2.5 Gbps serial signaling rate
- Flexible parallel-to-serial conversion in transmit path
- Flexible serial-to-parallel conversion in receive path
- Multiple selectable loopback/loop-through modes
- 100K to 200K usable gates of CPLD logic
- 240K to 480 Kb of integrated memory
 - 192K to 384Kb of synchronous or asynchronous SRAM
 - 48K to 96Kb of true Dual-Port or FIFO RAM
- Internal transmit and receive PLLs
- Logic dedicated Spread Aware PLL
- . Transmit FIFO for flexible variable phase clocking
- Differential CML serial input with internal termination and DC-restoration
- Differential CML serial output with source matched impedance of 50Ω
- 160–240 user programmable I/Os
- Any Volt™ I/O interface
 - Programmable as 1.8V, 2.5V, 3.3V
- Multiple I/O standards
 - LVCMOS, LVTTL, 3.3V PCI, SSTL2(I-II), SSTL3(I-II), HSTL(I-IV), and GTL+
- Direct interface to standard fiber-optic modules
- · Designed to drive:
 - Fiberoptic Modules
 - Copper Cables
 - Circuit Board Traces
 - Backplane Links
 - Box-to-Box Links
 - Chip-to-Chip Communication
- Extremely flexible clocking options
 - Four global clocks
 - Up to 192 additional product term clocks
 - Clock polarity at every register
- Carry chain logic for fast and efficient arithmetic operations
- Fully PCI compliant (Rev. 2.2)
- JTAG programming interface with boundary scan support
- High-Speed (HS) or Frequency Agile (FA) Programmable Serial Interface™ (PSI™) versions available

High-Speed PSI Features

- 2.5 Gbps/channel serial signaling rate
- Full Bellcore and ITU jitter compliance

Note:

1. For more detail, refer to the "Frequency Agile PSI" data sheet.

- · Power-saving mode
- · Up to two serial channels available to allow:
 - High-Bandwidth
 - Redundancy
- · Supported standards:
 - InfiniBand™
 - SONET OC-48

Frequency Agile PSI Features^[1]

- 200 Mbps-1.5 Gbps serial signaling rate per channel
- · Up to eight serial channels available to allow:
 - Frequency Agile
 - Redundancy
- · Selectable input and output clocking options
- MultiFrame™ receive framer provides alignment to:
 - Bit, byte, half-word, word, multi-word
 - COMMA or Full K28.5 detect
 - Single or Multi-byte framer for byte alignment
 - Low-latency option
- · Skew alignment support for multiple bytes of offset
- Selectable parity check/generate
- Serial Built-In-Self-Test (BIST) for at-speed link testing
- Per-channel Link Quality Indicator
- Analog signal detect
- Digital signal detect
- Frequency range detect
- Supported standards:
 - Fibre Channel
 - Gigabit Ethernet
 - -ESCON
 - DVB
 - -SMPTE

Development Software

- Warp®
 - IEEE 1076/1164 VHDL or IEEE 1364 Verilog context sensitive editing
 - Active-HDL FSM graphical finite state machine editor
 - Active-HDL SIM post-synthesis timing simulator
 - Architecture Explorer for detailed design analysis
 - Static Timing Analyzer for critical path analysis
 - Available on Windows® 95, 98 & NT for \$99
 - Supports all Cypress programmable logic products

PSI Quick Reference Selection Guide

		SONET/SDH Bandwidth	Frequency-Agile PSI Serial Bandwidth		
Logic Gate Density	1 x 2.5 Gbps	2 x 2.5 Gbps	4 x 0.2 – 1.5 Gbps	8 x 0.2 – 1.5 Gbps	
100K	25G01K100	25G02K100	15G04K100		
200K		25G02K200	15G04K200	15G08K200	

PSI Family Standards Supported

PSI Device		SONET/SDH (OC48/STM16)	InfiniBand	Fibre Channel	Gigabit Ethernet	ESCON	SMPTE 259/292	Custom
SONET/SDH	CYS25G01K100	Х						Х
	CYS25G02K100	Х						Х
	CYS25G02K200	X						Х
High	CYP25G01K100		Х					Х
Speed	CYP25G02K100		Х					Х
	CYP25G02K200		Х					Х
Frequency	CYP15G04K100			Х	Х	Х	Х	Χ
Agile	CYP15G04K200			Х	Х	Х	Х	Х
	CYP15G08K200			Х	Х	Х	Х	Х

PSI Family General Selection Guide

Device	Typical Gates	Macrocells	Cluster memory (Kbits)	Channel memory (Kbits)	Maximum User Programmable I/O	Package Offering
25G01K100	46K-144K	1536	192	48	240	456-BGA (35x35 mm, 1.27 mm pitch)
25G02K100	46K-144K	1536	192	48	194	456-BGA (35x35 mm, 1.27 mm pitch)
25G02K200	92K-288K	3072	384	96	320	700-BGA (45x45 mm, 1.27 mm pitch)
15G04K100	46K-144K	1536	192	48	206	456-BGA (35x35mm, 1.27 mm pitch)
15G04K200	92K-288K	3072	384	96	332	700-BGA (45x45 mm, 1.27 mm pitch)
15G08K200	92K-288K	3072	384	96	206	700 BGA (45x45 mm, 1.27 mm pitch)

Shaded areas contain advance information.

PSI Family Performance Selection Guide

Device	Channels & Link Speed	Total Bandwidth	f _{MAX2} (MHz)	Logic Speed— t _{PD} Pin-to-Pin (ns)	Standby I _{CC} ^[2]
25G01K100	1 x 2.5 Gbps	2.5 Gbps	222	7.5	16 mA
25G02K100	2 x 2.5 Gbps	5.0 Gbps	222	7.5	22 mA
25G02K200	2 x 2.5 Gbps	5.0 Gbps	181	8.5	22 mA
15G04K100	4 x 0.2 – 1.5 Gbps	6.0 Gbps	222	7.5	18 mA
15G04K200	4 x 0.2 – 1.5 Gbps	6.0 Gbps	181	8.5	18 mA
15G08K200	8 x 0.2 – 1.5 Gbps	12.0 Gbps	181	8.5	26 mA

Note:

2. Standby I_{CC} values are with logic PLL not utilized, no output load, and stable inputs.

3. Shaded area is preliminary

Document #: 38-02021 Rev. *B Page 2 of 58

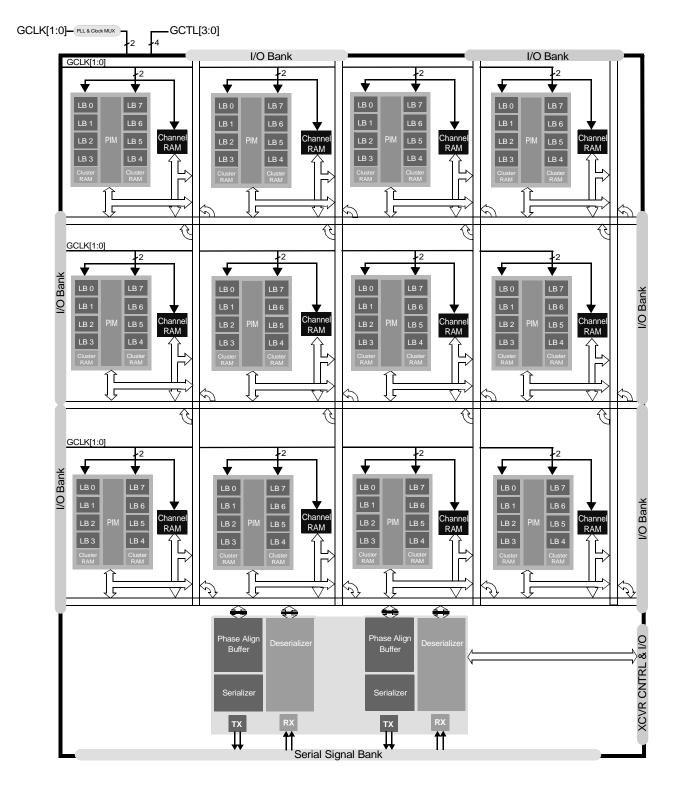


Figure 1. High-Speed PSI™ Block Diagram (25G02K100) with I/O Bank Structure.

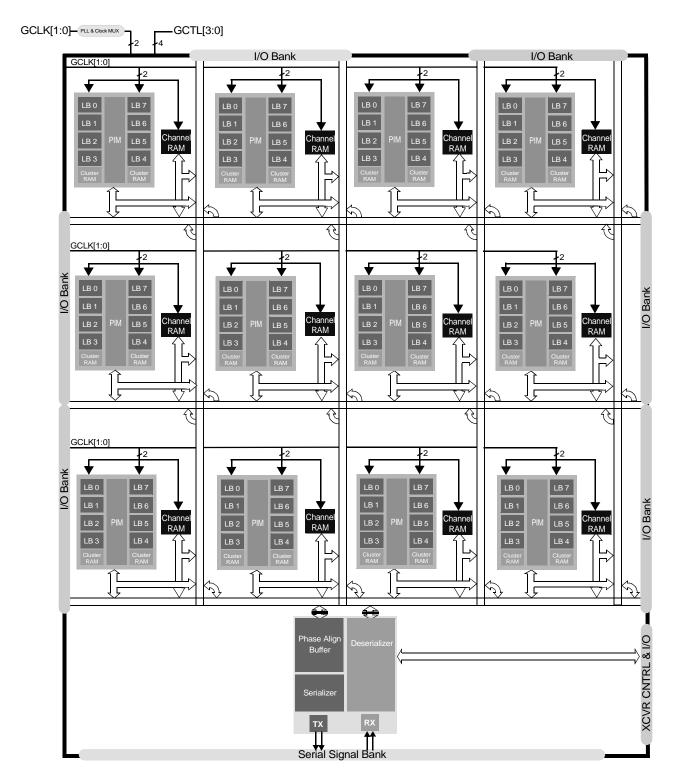


Figure 2. High-Speed PSI™ Block Diagram (25G01K100) with I/O Bank Structure.

Functional Description

The Programmable Serial Interface (PSI) family is a point-to-point or point-to-multipoint programmable communications building block allowing the manipulation and transfer of data over high-speed serial links at signaling speeds ranging from 200 Mbps to 1.5Gbps or 2.5 Gbps per serial link. The PSI family is designed to combine the high speed, predictable timing, high density, low power, and ease of use of complex programmable logic devices (CPLD) with the serializing/deserializing (SERDES) capability of high-speed serial transceivers. The family is divided into two groups: High-Speed PSI and Frequency—Agile PSI. Both groups have unique transceiver characteristics that define the specific transceiver block operation of a given PSI device.

The architecture of the device is based on logic block clusters (LBC) and serial transceiver blocks that are connected by horizontal and vertical routing channels. Each LBC features eight individual logic blocks (LB) of 16 marcrocells and two cluster memory blocks. Adjacent to each LBC is a channel memory block which is externally accessible through the I/O interface. Each transmit channel of the transceiver accepts parallel characters, encodes each character for transport and converts it to serial data. Each receive channel accepts serial data and converts it to parallel data, decoding the data into characters and presents these characters to the routing channels of the PSI unit.

High-Speed PSI

The transceiver operation of the high-speed programmable serial interface devices is self-contained in a single block. It has separate transmit and receive PLLs and a Clock and Data Recovery (CDR) unit for flexible clocking. The transmit channel accepts a 16-bit input character from the routing channels and passes the character to an elasticity buffer. This character is then serialized and output on dual differential transmission-line drivers at the required bit-rate. The receive channel accepts a serial bit-stream from the two differential line receivers. This bit-stream is deserialized and a 16-bit character is presented to the routing channels in the PSI device. The block also features loop-back and loop-through modes for simplified design debugging.

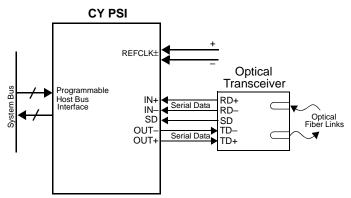


Figure 3. High-Speed PSI System Connections with an Optical Interface.

Global Routing Description

The routing architecture in the PLD block of a PSI device is made up of horizontal and vertical (H&V) routing channels. These routing channels allow signals to move among I/Os, logic blocks and memories. In addition to the horizontal and vertical routing channels that interconnect the I/O banks, channel memory blocks, transceiver blocks and logic block clusters, each LBC contains a Programmable Interconnect MatrixTM (PIMTM), which is used to route signals among the logic blocks and the cluster memory blocks in the LBC.

Figure 5 is a block diagram of the routing channels that interface within the PSI architecture. The LBC is exactly the same for every member of the PSI family.

Transceiver Block

Each transceiver block of a given PSI device will have one serializer transmit path and one deserializer receive path operating at a speed from 200 Mbps to 1.5Gbps or 2.5 Gbps. The transceiver block interfaces to the routing channels of the PSI device through highly configurable datapath cells. For specific architecture and operation of the transceiver blocks please refer to the Serial Transceiver Operation section (page 17).

High-Speed PSI Transceiver Blocks

High-Speed PSI devices include one or two transceiver blocks operating at 2.5 Gbps per channel. Both channels operate independently of each other. They use the same reference clock.

The internal interfacing to the transceiver blocks of the high-speed device occur through the port definition of the high-speed transceiver block. The internal signals and their definition are described in the "Pin & Signal Description" section (page 46).

Standard Datapath Cell

Figure 4 is a block diagram of the PSI datapath cell. The datapath cell contains a three-state transmit buffer, a receive buffer, and a register that can be configured as an transmit or receive register.

The Transceiver Enable (TE) can be selected from one of the four global control signals or from one of two Output Control Channel (OCC) signals. The transmit enable can be configured as always enabled or always disabled or it can be controlled by one of the remaining inputs to the mux. The selection is done via a mux that includes $V_{\rm CC}$ and GND as inputs.

One of the global clocks can be selected as the clock for the datapath cell register. The clock mux output is an input to a clock polarity mux that allows the transmit/receive register to be clocked on either edge of the clock.

Document #: 38-02021 Rev. *B Page 5 of 58

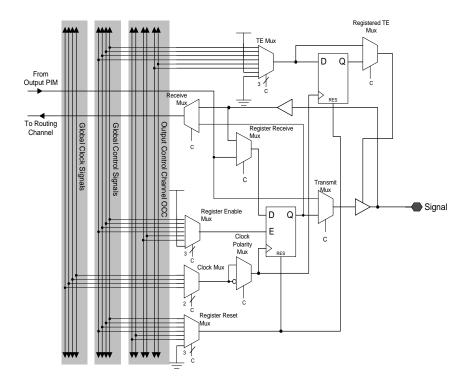


Figure 4. Block Diagram of a Standard Datapath Cell.

Logic Block Cluster (LBC)

The PSI architecture consists of several logic block clusters, each of which have 8 Logic Blocks (LB) and 2 cluster memory blocks connected via a Programmable Interconnect Matrix (PIM) as shown in *Figure 6*. Each cluster memory block consists of 8-Kbit single-port RAM, which is configurable as synchronous or asynchronous. The cluster memory blocks can be cascaded with other cluster memory blocks within the same LBC as well as other LBCs to implement larger memory func-

tions. If a cluster memory block is not specifically utilized by the designer, Cypress's *Warp* software can automatically use it to implement large blocks of logic.

All LBCs interface with each other via horizontal and vertical routing channels.

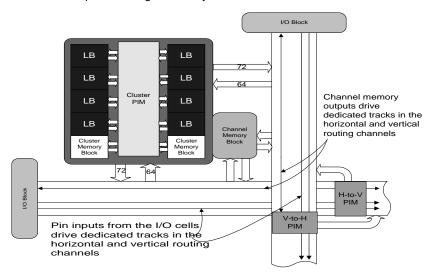


Figure 5. PSI Routing Interface.

Document #: 38-02021 Rev. *B Page 6 of 58

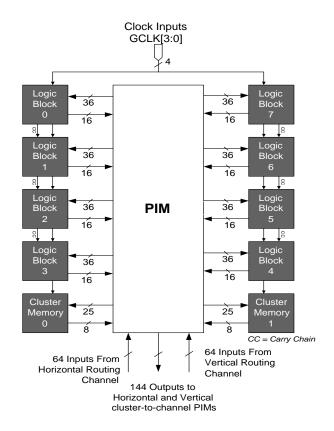


Figure 6. PSI Logic Block Cluster Diagram.

Logic Block (LB)

The logic block is the basic building block of the PSI architecture. It consists of a product term array, an intelligent product-term allocator, and 16 macrocells.

Product Term Array

Each logic block features a 72 x 83 programmable product term array. This array accepts 36 inputs from the PIM. These inputs originate from device pins and macrocell feedbacks as well as cluster memory and channel memory feedbacks. Active LOW and active HIGH versions of each of these inputs are generated to create the full 72-input field. The 83 product terms in the array can be created from any of the 72 inputs.

Of the 83 product terms, 80 are for general-purpose use for the 16 macrocells in the logic block. Two of the remaining three product terms in the logic block are used as asynchronous set and asynchronous reset product terms. The final product term is the Product Term clock (PTCLK) and is shared by all 16 macrocells within a logic block.

Product Term Allocator

Through the product term allocator, *Warp* software automatically distributes the 80 product terms as needed among the 16 macrocells in the logic block. The product term allocator pro-

vides two important capabilities without affecting performance: product term steering and product term sharing.

Product Term Steering

Product term steering is the process of assigning product terms to macrocells as needed. For example, if one macrocell requires ten product terms while another needs just three, the product term allocator will "steer" ten product terms to one macrocell and three to the other. On PSI devices, product terms are steered on an individual basis. Any number between 1 and 16 product terms can be steered to any macrocell.

Product Term Sharing

Product term sharing is the process of using the same product term among multiple macrocells. For example, if more than one function has one or more product terms in its equation that are common to other functions, those product terms are only created once. The PSI product term allocator allows sharing across groups of four macrocells in a variable fashion. The software automatically takes advantage of this capability so that the user does not have to intervene.

Note that neither product term sharing nor product term steering have any effect on the speed of the product. All steering and sharing configurations have been incorporated in the timing specifications for the PSI devices.

Macrocell

Within each logic block there are 16 macrocells. Each macrocell accepts a sum of up to 16 product terms from the product term array. The sum of these 16 product terms can be output in either registered or combinatorial mode. *Figure 7* displays the block diagram of the macrocell. The register can be asynchronously preset or asynchronously reset at the macrocell level with the separate preset and reset product terms. Each of these product terms features programmable polarity. This allows the registers to be preset or reset based on an AND expression or an OR expression.

An XOR gate in the PSI macrocell allows for many different types of equations to be realized. It can be used as a polarity mux to implement the true or complement form of an equation in the product term array or as a toggle to turn the D flip-flop into a T flip-flop. The carry-chain input mux allows additional flexibility for the implementation of different types of logic. The macrocell can utilize the carry chain logic to implement adders, subtractors, magnitude comparators, parity tree, or even generic XOR logic. The output of the macrocell is either registered or combinatorial.

Carry Chain Logic

The PSI macrocell features carry chain logic which is used for fast and efficient implementation of arithmetic operations. The carry logic connects macrocells in up to 4 logic blocks for a total of 64 macrocells. Effective data path operations are im-

plemented through the use of carry-in arithmetic, which drives through the circuit quickly. *Figure* 7 shows that the carry chain logic within the macrocell consists of two product terms (CPT0 and CPT1) from the PTA and an input carry-in for carry logic. The inputs to the carry chain mux are connected directly to the product terms in the PTA. The output of the carry chain mux generates the carry-out for the next macrocell in the logic block as well as the local carry input that is connected to an input of the XOR input mux. Carry-in and a configuration bit are inputs to an AND gate. This AND gate provides a method of segmenting the carry chain in any macrocell in the logic block.

Macrocell Clocks

Clocking of the register is highly flexible. Four global synchronous clocks (GCLK[3:0]) and a Product Term clock (PTCLK) are available at each macrocell register. Furthermore, a clock polarity mux within each macrocell allows the register to be clocked on the rising or the falling edge (see macrocell diagram in *Figure 7*).

PRESET/RESET Configurations

The macrocell register can be asynchronously preset and reset using the PRESET and RESET mux. Both signals are active high and can be controlled by either of two Preset/Reset product terms (PRC[1:0] in *Figure 7*) or GND. In situations where the PRESET and RESET are active at the same time, RESET takes priority over PRESET.

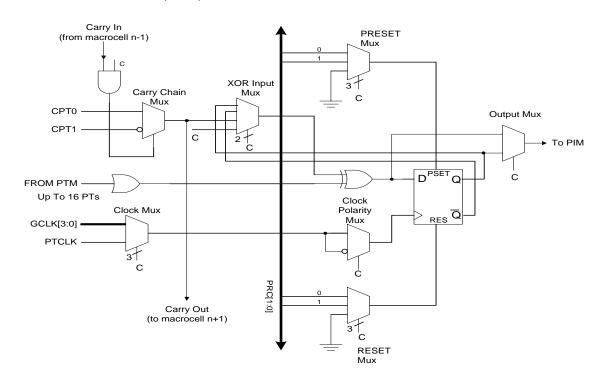


Figure 7. PSI Macrocell.

Document #: 38-02021 Rev. *B Page 8 of 58

Programmable Serial Interface (High Speed Devices)

Embedded Memory

Each member of the PSI family contains two types of embedded memory blocks. The channel memory block is placed at the intersection of horizontal and vertical routing channels. Each channel memory block is 4096 bits in size and can be configured as asynchronous or synchronous Dual-Port RAM, Single-Port RAM, Read-Only memory (ROM), or synchronous FIFO memory. The memory organization is configurable as 4Kx1, 2Kx2, 1Kx4 and 512x8. The second type of memory block is located within each LBC and is referred to as a cluster memory block. Each LBC contains two cluster memory blocks that are 8192 bits in size. Similar to the channel memory blocks, the cluster memory blocks can be configured as 8Kx1, 4Kx2, 2Kx4 and 1Kx8 and can be configured as either asynchronous or synchronous Single-Port RAM or ROM.

Cluster Memory

Each logic block cluster of the PSI device contains two 8192-bit cluster memory blocks. *Figure 8* is a block diagram of the cluster memory block and the interface of the cluster memory block to the cluster PIM.

The output of the cluster memory block can be optionally registered to perform synchronous pipelining or to register asynchronous read and write operations. The output registers contain an asynchronous RESET which can be used in any type of sequential logic circuits (e.g., state machines).

There are four global clocks (GCLK[3:0]) and one local clock available for the input and the output registers. The local clock for the input registers is independent of the one used for the output registers. The local clock is generated in the user-design in a macrocell or comes from an I/O pin.

Cluster Memory Initialization

The cluster memory powers up in an undefined state, but is set to a user-defined known state during configuration. To facilitate the use of look-up-table (LUT) logic and ROM applications, the cluster memory blocks can be initialized with a given set of data when the device is configured at power up. For LUT and ROM applications, the user cannot write to memory blocks.

Channel Memory

The PSI architecture includes an embedded memory block at each crossing point of horizontal and vertical routing channels. The channel memory is a 4096-bit embedded memory block that can be configured as asynchronous or synchronous Single-Port RAM, Dual-Port RAM, ROM, or synchronous FIFO memory.

Data, address, and control inputs to the channel memory are driven from horizontal and vertical routing channels. All data and FIFO logic outputs drive dedicated tracks in the horizontal and vertical routing channels. The clocks for the channel memory block are selected from four global clocks and pin inputs from the horizontal and vertical channels. The clock muxes also include a polarity mux for each clock so that the user can choose an inverted clock.

Dual-Port (Channel Memory) Configuration

Each port has distinct address inputs, as well as separate data and control inputs that can be accessed simultaneously. The inputs to the Dual-Port memory are driven from the horizontal and vertical routing channels. The data outputs drive dedicated tracks in the routing channels. The interface to the routing is such that Port A of the Dual-Port interfaces primarily with the horizontal routing channel and Port B interfaces primarily with the vertical routing channel.

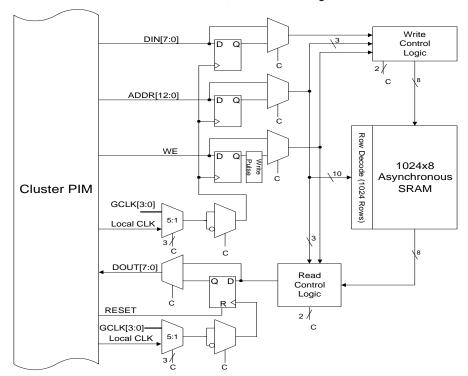


Figure 8. Block Diagram of Cluster Memory Block.

Document #: 38-02021 Rev. *B Page 9 of 58

The clocks for each port of the Dual-Port configuration are selected from four global clocks and two local clocks. One local clock is sourced from the horizontal channel and the other from the vertical channel. The data outputs of the dual-port memory can also be registered. Clocks for the output registers are also selected from four global clocks and two local clocks. One clock polarity mux per port allows the use of true or complement polarity for input and output clocking purposes.

Arbitration

The Dual-Port configuration of the Channel Memory Block provides arbitration when both ports access the same address at the same time. Depending on the memory operation being attempted, one port always gets priority. See *Table 1* for details on which port gets priority for read and write operations. An active-LOW 'Address Match' signal is generated when an address collision occurs.

Table 1. Arbitration Result: Address Match Signal Becomes Active

Port A	Port B	Result of Arbitration	Comment
Read	Read	No arbitration required	Both ports read at the same time
Write	Read	Port A gets priority	If Port B requests first then it will read the cur- rent data. The output will then change to the newly written data by Port A
Read	Write	Port B gets priority	If Port A requests first then it will read the cur- rent data. The output will then change to the newly written data by Port B
Write	Write	Port A gets priority	Port B is blocked until Port A is finished writing

FIFO (Channel Memory) Configuration

The channel memory blocks are also configurable as synchronous FIFO RAM. In the FIFO mode of operation, the channel memory block supports all normal FIFO operations without the use of any general-purpose logic resources in the device.

The FIFO block contains all of the necessary FIFO flag logic, including the read and write address pointers. The FIFO flags include an empty/full flag (EF), half-full flag (HF), and programmable almost-empty/full (PAEF) flag output. The FIFO configuration has the ability to perform simultaneous read and write operations using two separate clocks. These clocks may be tied together for a single operation or may run independently for asynchronous read/write (w.r.t. each other) applications. The data and control inputs to the FIFO block are driven from the horizontal or vertical routing channels. The data and flag outputs are driven onto dedicated routing tracks in both the

horizontal and vertical routing channels. This allows the FIFO blocks to be expanded by using multiple FIFO blocks on the same horizontal or vertical routing channel without any speed penalty.

In FIFO mode, the write and read ports are controlled by separate clock and enable signals. The clocks for each port are selected from four global clocks and two local clocks.

One local clock is sourced from the horizontal channel and the other from the vertical channel. The data outputs from the read port of the FIFO can also be registered. One clock polarity mux per port allows using true or complement polarity for read and write operations. The write operation is controlled by the clock and the write enable pin. The read operation is controlled by the clock and the read enable pin. The enable pins can be sourced from horizontal or vertical channels.

Channel Memory Initialization

The channel memory powers up in an undefined state, but is set to a user-defined known state during configuration. To facilitate the use LUT logic and ROM applications, the channel memory blocks can be initialized with a given set of data when the device is configured at power up. For LUT and ROM applications, the user cannot write to memory blocks.

Channel Memory Routing Interface

Similar to LBC outputs, the channel memory blocks feature dedicated tracks in the horizontal and vertical routing channels for the data outputs and the flag outputs, as shown in *Figure 9*. This allows the channel memory blocks to be expanded easily. These dedicated lines can be routed to I/O pins as chip outputs or to other logic block clusters to be used in logic equations.

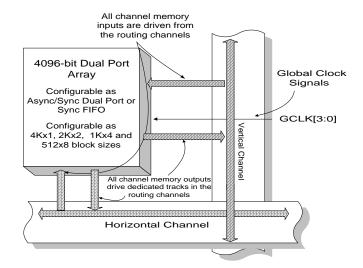


Figure 9. Block Diagram of Channel Memory Block.

Document #: 38-02021 Rev. *B Page 10 of 58

I/O Banks

The PSI interfaces the horizontal and vertical routing channels to the pins through I/O banks. There are several I/O banks per device as shown in *Figure 10* and all I/Os from an I/O bank are located in the same section of a package for PCB layout convenience. There exist two kinds of I/O banks; fixed-signal I/O banks and user programmable I/O banks.

The first fixed signal bank is the Serial Signal Bank. This bank includes all differential serial data transmission and receive signals. The second bank is the Transceiver Control Bank. This bank includes all static signal pins required for the configuration and operation of the transceiver blocks in each of the PSI devices.

Each PSI device has several types of user programmable I/O banks. The table on the following page indicates the availability of each type of programmable bank by device. Supported I/O standards for each bank are addressed by the appropriate V_{REF} and V_{CCIO} voltages. All the V_{REF} and V_{CCIO} pins in an I/O bank must be connected to the same V_{REF} and V_{CCIO} voltage respectively. This requirement restricts the number of I/O standards supported by an I/O bank at any given time. It also dictates the I/O standard used for the GCTL[3:0] pins.

The architecture defining each programmable I/O bank consists of several I/O cells, where each I/O cell contains an input/output register, an output enable register, programmable slew rate control and programmable bus hold control logic. Each I/O cell drives a pin output of the device; the cell also supplies an input to the device that connects to a dedicated track in the associated routing channel.

There are four dedicated inputs (GCTL[3:0]) that are used as Global Control Signals available to every I/O cell. These global control signals may be used as output enables, register resets and register clock enables as shown in *Figure 11*.

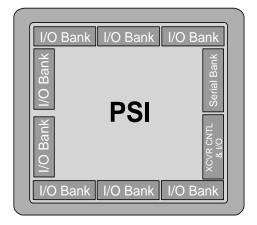


Figure 10. PSI I/O Bank Block Diagram.

PSI Programmable I/O Banks

		Semi- Specific		
Device	Flexible	Flexible	v_{ccio}	V_{REF}
25G01K100	Bank[0:3, 5]		Bank[6:7]	
		V _{CCIO} =3.3V	1.5V	0.68-0.90V
25G02K100	Bank[0:3]	Bank[4]	Bank[5:7]	
	V _{CCIO} =3.3\		1.5V	0.68-0.90V

IO Standards

10 Ctaridards								
I/O Standard	V _{RE}	_F (V)	V _{CCIO}	Termination Voltage (V _{TT})				
	Min	Max						
LVTTL	N.	/A	3.3 V	N/A				
LVCMOS			3.3 V	N/A				
LVCMOS3			3.0 V	N/A				
LVCMOS2			2.5 V	N/A				
LVCMOS18			1.8 V	N/A				
3.3V PCI			3.3 V	N/A				
GTL+	0.9	1.1	N/A	1.5				
SSTL3 I	1.3	1.7	3.3 V	1.5				
SSTL3 II	1.3	1.7	3.3 V	1.5				
SSTL2 I	1.15	1.35	2.5 V	1.25				
SSTL2 II	1.15	1.35	2.5 V	1.25				
HSTL I	0.68	0.9	1.5 V	0.75				
HSTL II	0.68 0.9		1.5 V	0.75				
HSTL III	0.68 0.9		1.5 V	1.5				
HSTL IV	0.68	0.9	1.5 V	1.5				

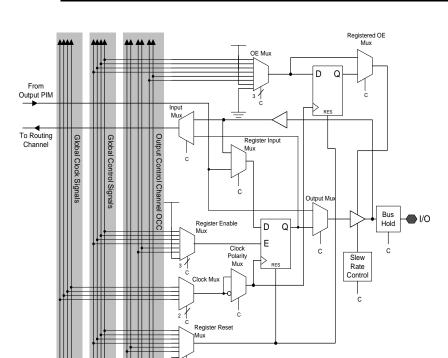


Figure 11. Block Diagram of I/O Cell.

I/O Cell

Figure 11 is a block diagram of the PSI I/O cell. The I/O cell contains a three-state input buffer, an output buffer, and a register that can be configured as an input or output register. The output buffer has a slew rate control option that can be used to configure the output for a slower slew rate. The input of the device and the pin output can each be configured as registered or combinatorial, however only one path can be configured as registered in a given design.

The output enable can be selected from one of the four global control signals or from one of two Output Control Channel (OCC) signals. The output enable can be configured as always enabled or always disabled or it can be controlled by one of the remaining inputs to the mux. The selection is done via a mux that includes $V_{\rm CC}$ and GND as inputs.

One of the global clocks can be selected as the clock for the I/O cell register. The clock mux output is an input to a clock polarity mux that allows the input/output register to be clocked on either edge of the clock.

Slew Rate Control

The output buffer has a slew rate control option. This allows the ouput buffer to slew at a fast rate (3 V/ns) or a slow rate (1 V/ns). All I/Os default to fast slew rate. For designs concerned with meeting FCC emissions standards the slow edge provides for lower system noise. For designs requiring very high performance the fast edge rate provides maximum system performance.

Programmable Bus Hold

On each I/O pin, user-programmable bus-hold is included. Bus-hold, which is an improved version of the popular internal

pull-up resistor, is a weak latch connected to the pin that does not degrade the device's performance. As a latch, bus-hold maintains the last state of a pin when the pin is placed in a high-impedance state, thus reducing system noise in bus-interface applications. Bus-hold additionally allows unused device pins to remain unconnected on the board, which is particularly useful during prototyping as designers can route new signals to the device without cutting trace connections to $V_{\rm CC}$ or GND. For more information, see the application note "Understanding Bus-Hold – A Feature of Cypress CPLDs."

Clocks

PSI has four primary global clock trees in the CPLD portion of the device (INTCLK[3:0]). Each of these clock trees distributes a clock signal to every cluster, channel memory, and I/O cell in the CPLD. The global clock trees are designed such that the clock skew is minimized while maintaining an acceptable clock delay. Each of the INTCLKs can choose from two input sources for the clock signal: A PLL derived output or another one as shown in the table below:

Device	IN- TCLK[0]	IN- TCLK[1]	IN- TCLK[2]	IN- TCLK[3]
25G01K100	GCLK[0]	GCLK[1]	TXCLK	RXCLK
25G02K100	GCLK[0]	RXCLK	TXCLK	RXCLK_B

GCLK[0] and GCLK[1] are accessible through pins on the device package. TXCLK and RXCLK are provided internally to the device. TXCLK (transmit clock) is intended for data transfer from the CPLD block to the transmit channel of the transceiver block. RXCLK (receive clock) is intended for data transfer from the receive channel of the transceiver block to the CPLD block. The TXCLK and RXCLK can also be used for

Programmable Serial Interface (High Speed Devices)

logic inside the CPLD block, e.g., for data processing. RXCLK_B is the RXCLK for the second transceiver block.

Clock Tree Distribution

The global clock tree performs two primary functions. First, the clock tree generates the four internal global clocks by multiplexing four reference clocks derived from the Transceiver Blocks and from the package pins and four PLL driven clocks. Second, the clock tree distributes the four global clocks to every cluster, channel memory, I/O block, and datapath cell on the die. The global clock tree is designed such that the clock skew is minimized while maintaining an acceptable clock delay.

Spread Aware™ PLL

Each device in the PSI family features an on-chip PLL designed using Spread Aware™ technology for low EMI applications. In general, PLLs are used to implement time-division-multiplex circuits to achieve higher performance with fewer device resources.

For example, a system that operates on a 32-bit data path that runs at 40 MHz can be implemented with 16-bit circuitry that runs internally at 80 MHz. PLLs can also be used to take advantage of the positioning of the internally generated clock edges to shift performance towards improved setup, hold or clock-to-out times.

There are several frequency multiply (X1, X2, X4, X8) and divide (/1, /2, /3, /4, /5, /6, /8, /16) options available to create a wide range of clock frequencies from a single clock input (GCLK[0]). For increased flexibility, there are seven phase

shifting options which allow clock skew/deskew by 45°, 90°, 135°, 180°, 225°, 270° or 315°.

The Spread Aware feature refers to the ability of the PLL to track a spread-spectrum input clock such that its spread is seen on the output clock with the PLL staying locked. The total amount of spread on the input clock should be limited to 0.6% of the fundamental frequency. Spread Aware feature is supported only with X1, X2 and X4 multiply options.

The Voltage Controlled Oscillator (VCO), the core of the PSI PLL is designed to operate within the frequency range of 100 MHz to 266 MHz. Hence, the multiply option combined with input (GCLK[0]) frequency should be selected such that this VCO operating frequency requirement is met. This is demonstrated in *Table 2* (columns 1, 2, and 3).

Another feature of this PLL is the ability to drive the output clock (INTCLK) off the PSI chip to clock other devices on the board, as shown in *Figure 12* below. This off-chip clock is half the frequency of the output clock as it has to go through a register (I/O register or a macrocell register).

This PLL can also be used for board deskewing purpose by driving a PLL output clock off-chip, routing it to the other devices on the board and feeding it back to the PLL's external feedback input (GCLK[1]). When this feature is used, only limited multiply, divide and phase shift options can be used.

Table 2 describes the valid multiply and divide options that can be used without an external feedback. Table 3 describes the valid multiply and divide options that can be used with an external feedback.

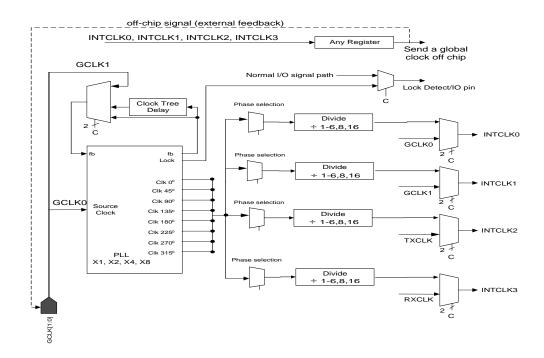


Figure 12. Block Diagram of Spread Aware PLL for CYP25G01K100.

Document #: 38-02021 Rev. *B Page 13 of 58

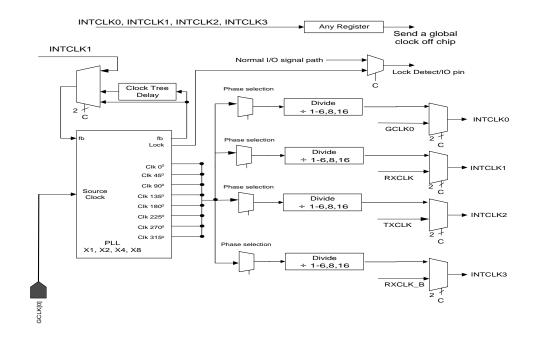


Figure 13. Block Diagram of Spread Aware PLL for CYP25G02K100.

Table 2. PLL Multiply and Divide Options—without INTCLK1 Feedback

Input Frequency	Valid	Multiply Options	Valid Divide Options				
(GCLK[0]) f _{PLLI} (MHz)	Value	VCO Output Frequency (MHz)	Value	Output Frequency (INTCLK[3:0]) f _{PLLO} (MHz)	Off-Chip Clock Frequency		
12.5–25	8	100-200	1–6, 8, 16	6.25–200	3.12-100		
25–33	8	200–266	1–6, 8, 16	12.5–266	6.25–133		
	4	100–133	1–6, 8, 16	6.25–133	3.12–66		
33–50	4	133–200	1–6, 8, 16	8.33–200	4.16–100		
50–66	4	200–266	1–6, 8, 16	12.5–266	6.25–133		
	2	100–133	1–6, 8, 16	6.25–133	3.12–66		
66–100	2	133–200	1–6, 8, 16	8.3–200	4.16–100		
100–133	2	200–266	1–6, 8, 16	12.5–266	6.25–133		
	1	100–133	1–6, 8, 16	6.25–133	3.12–66		

Table 3. PLL Multiply and Divide Options—with External Feedback

	Valid Multiply Options		Valid Divide Options				
Input (GCLK) Frequency f _{PLLI} (MHz)	Value	VCO Output Frequency (MHz)	Value	Output (INTCLK) Frequency f _{PLLO} (MHz)	Off-Chip Clock Frequency		
50–66	1	100–133	1	100–133	50–66		
66–100	1	133–200	1	133–200	66–100		
100–133	1	200–266	1	200–266	100–133		

Document #: 38-02021 Rev. *B Page 14 of 58

Table 4 describes the valid phase shift options that can be used with or without an external feedback.

Table 4. PLL Phase Shift Options—with and without INTCLK1 Feedback

Without External Feedback	With External Feedback
0°,45°, 90°, 135°, 180°, 225°, 270°, 315°	0°

Table 5 is an example of the effect of all the available divide and phase shift options on a VCO output of 250 MHz. It also shows the effect of division on the duty cycle of the resultant clock. Note that the duty cycle is 50-50 when a VCO output is divided by an even number. Also note that the phase shift applies to VCO output and not to the divided output

For more details on the architecture and operation of this PLL please refer to the application note entitled "PSI PLL and Clock Tree."

Table 5. Timing of Clock Phases for all Divide Options for a VCO Output Frequency of 250 MHz

Divide Factor	Period (ns)	Duty Cy- cle%	0° (ns)	45° (ns)	90° (ns)	135° (ns)	180° (ns)	225° (ns)	270° (ns)	315° (ns)
1	4	40-60	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
2	8	50	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
3	12	33-67	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
4	16	50	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
5	20	40-60	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
6	24	50	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
8	32	50	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
16	64	50	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5

Document #: 38-02021 Rev. *B Page 15 of 58

Timing Model

One important feature of the PSI family is the simplicity of its timing. All combinatorial and registered/synchronous delays are worst case and system performance is static (as shown in the AC specs section) as long as data is routed through the same horizontal and vertical channels. Figure 14 illustrates the true timing model for the 200-MHz devices. For synchronous clocking of macrocells, a delay is incurred from macrocell clock to macrocell clock of separate Logic Blocks within the same cluster, as well as separate Logic Blocks within different clusters. This is shown as $t_{\rm SCS}$ and $t_{\rm SCS2}$ in Figure 14. For combinatorial paths, any input to any output (from corner to corner on the device), incurs a worst-case delay in the 100K gate PSI regardless of the amount of logic or which horizontal and vertical channels are used. This is the $t_{\rm PD}$ shown in Figure

14. For synchronous systems, the input set-up time to the output macrocell register and the clock to output time are shown as the parameters t_{MCS} and t_{MCCO} shown in the *Figure 14*. These measurements are for any output and synchronous clock, regardless of the logic placement.

PSI features:

- no dedicated vs. I/O pin delays
- no penalty for using 0-16 product terms
- no added delay for steering product terms
- · no added delay for sharing product terms
- · no output bypass delays

The simple timing model of the PSI family eliminates unexpected performance penalties.

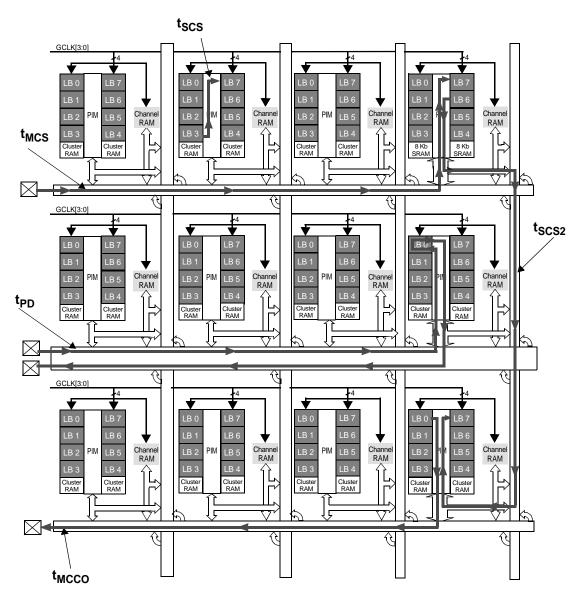


Figure 14. Timing Model for 100K gate PSI Devices.

Document #: 38-02021 Rev. *B Page 16 of 58

Serial Transceiver Operation

The PSI transceiver block is a highly configurable transceiver designed to support reliable transfer of large quantities of data, using high-speed serial links, from one or multiple sources to one or multiple destinations. This block supports either a single 16-bit wide channel in the case of High-Speed PSI devices or four single-byte or single-character channels, that may be combined to support transfer of wider buses, in the case of Frequency Agile PSI devices.

High-Speed PSI Transceiver Operation

Transmit Data Path

Operating Modes

The transmit path of the High-Speed PSI supports 16-bit-wide data paths.

Phase-Align Buffer

Data from the input register is passed to a phase-align buffer (FIFO). This buffer is used to absorb clock phase differences between the transmit input clock and the internal character clock.

Initialization of the phase-align buffer takes place when the FIFO_RST signal is asserted LOW. When FIFO_RST is returned HIGH, the present input clock phase relative to TXCLK is set. Once set, the input clock is allowed to skew in time up to half a character period in either direction relative to REFCLK; i.e. ±180. This time shift allows the delay path of the character clock (relative to REFCLK) to change due to operating voltage and temperature while not effecting the desired operation. FIFO_RST is an asynchronous signal. FIFO_ERR is the transmit FIFO Error indicator. When HIGH, the transmit FIFO has either under or overflowed. The FIFO can be externally reset or logically reset by PSI logic to clear the error indication or if no action is taken, the internal clearing mechanism will clear the FIFO in 9 clock cycles. When the FIFO is being reset, the output data is 1010.

Transmit PLL Clock Multiplier

The Transmit PLL Clock Multiplier accepts a 156.25-MHz external clock at the REFCLK input, and multiplies that clock by 16 to generate a bit-rate clock for use by the transmit shifter. The operating serial signaling rate and allowable range of REFCLK frequencies are listed in the High-Speed PSI Transceiver Timing Parameter Values table under "REFCLK Timing Parameters" (see page 33). The REFCLK± input is a standard LVPECL input.

Serializer

The parallel data from the phase-align buffer is passed to the Serializer which converts the parallel data to serial data using the bit-rate clock generated by the Transmit PLL clock multiplier. TXD[15] is the most significant bit of the output word, and is transmitted first on the serial interface.

Serial Output Driver

The serial interface Output Driver makes use of high-performance differential CML (Current Mode Logic) to provide a source-matched driver for the transmission lines. This driver receives its data from the Transmit Shifters or the receive loopback data. The outputs have signal swings equivalent to that

of standard LVPECL drivers, and are capable of driving AC-coupled optical modules or transmission lines.

Receive Data Path

Serial Line Receivers

A differential line receiver, IN±, is available for accepting the input serial data stream. The serial line receiver inputs can accommodate high wire interconnect and filtering losses or transmission line attenuation (V_{DIF} \geq 25 mV, or 50 mV peak-to-peak differential), and can be AC-coupled to +3.3V or +5V powered fiber-optic interface modules. The common-mode tolerance of these line receivers accommodates a wide range of signal termination voltages.

Lock to Data Control

Line Receiver routed to the clock and data recovery PLL is monitored for

- •status of signal detect (SD) pin
- •status of LOCKREF pin
- received data stream outside normal frequency range (±200 ppm)

This status is presented on the LFI (Line Fault Indicator) output signal, which changes asynchronously in the cases when SD or LOCKREF goes from HIGH to LOW. Otherwise, it changes synchronously to the REFCLK.

Clock/Data Recovery

The extraction of a bit-rate clock and recovery of data bits from received serial stream is performed by a Clock/Data Recovery (CDR) block. The clock extraction function is performed by high-performance embedded phase-locked loop (PLL) that tracks the frequency of the incoming bit stream and aligns the phase of the internal bit-rate clock to the transitions in the selected serial data stream.

CDR accepts a character-rate (bit-rate \div 16) reference clock on the REFCLK input. This REFCLK input is used to ensure that the VCO (within the CDR) is operating at the correct frequency (rather than some harmonic of the bit-rate), to improve PLL acquisition time, and to limit unlocked frequency excursions of the CDR VCO when no data is present at the serial inputs.

Regardless of the type of signal present, the CDR will attempt to recover a data stream from it. If the frequency of the recovered data stream is outside the limits set by the range controls, the CDR PLL will track REFCLK instead of the data stream. When the frequency of the selected data stream returns to a valid frequency, the CDR PLL is allowed to track the received data stream. The frequency of REFCLK is required to be within ±200 ppm of the frequency of the clock that drives the REFCLK signal of the remote transmitter to ensure a lock to the incoming data stream.

For systems using multiple or redundant connections, the $\overline{\text{LFI}}$ output can be used to select an alternate data stream. When an $\overline{\text{LFI}}$ indication is detected, PSI logic can toggle selection of the input device. When such a port switch takes place, it is necessary for the PLL to re-acquire lock to the new serial stream.

External Filter

The CDR circuit uses external capacitors for the PLL filter. A 0.1- μ F capacitor needs be connected between RXCN1 and

Document #: 38-02021 Rev. *B Page 17 of 58

RXCP1. Similarly a 0.1-µF capacitor needs to be connected between RXCN2 and RXCP2. The recommended packages and dielectric material for these capacitors are 0805 X7R or 0603 X7R.

Deserializer

The CDR circuit extracts bits from the serial data stream and clocks these bits into the Deserializer at the bit-clock rate. The Deserializer converts serial data into parallel data. RXD[15] is the most significant bit of the output word and is received first on the serial interface.

Loopback/Timing Modes

High-Speed PSI supports various loopback modes as described below.

Facility Loopback (Line Loopback With Retiming)

When the LINELOOP signal is set HIGH, the Facility Loopback mode is activated and the high-speed serial receive data (IN±) is presented to the high-speed transmit output (OUT±) after retiming. In Facility Loopback mode, the high-speed receive data (IN±) is also converted to parallel data and presented to the low-speed receive data output pins (RXD[15:0]). The receive recovered clock is also divided down and presented to the low speed clock output (RXCLK).

Equipment Loopback (Diagnostic Loopback With Retiming)

When the DIAGLOOP signal is set HIGH, transmit data is looped back to the RX PLL, replacing IN±. Data is looped back

from the parallel TX inputs to the parallel RX outputs. The data is looped back at the internal serial interface and goes through transmit shifter and the receive CDR. SD is ignored in this mode.

Line Loopback Mode (Non-retimed Data)

When the LOOPA signal is set HIGH, the RX serial data is directly buffered out to the transmit serial data. The data at the serial output is not retimed.

Loop Timing Mode

When the LOOPTIME signal is set HIGH, the TX PLL is bypassed and receive bit-rate clock is used for transmit side shifter.

Reset Modes

ALL logic circuits in the device can be reset using RESET and FIFO_RST signals. When RESET is set LOW, all logic circuits except FIFO are internally reset. When FIFO_RST is set LOW, the FIFO logic is reset.

Power-down Mode

High-Speed PSI transceiver blocks provide a global power-down signal PWRDN. When LOW, this signal powers down the entire device to a minimal power dissipation state. RESET and FIFO_RST signals should be asserted LOW along with PWRDN signal to ensure low power dissipation.

Document #: 38-02021 Rev. *B Page 18 of 58

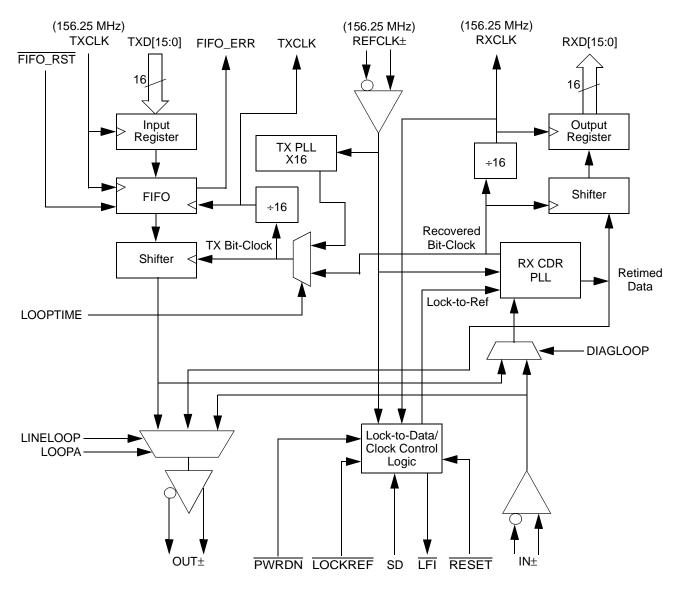


Figure 15. High Speed-PSI Transceiver Logic Block Diagram.

Programmable Serial Interface (High Speed Devices)

IEEE 1149.1 Compliant JTAG Operation

The PSI family has an IEEE std 1149.1 JTAG interface for both Boundary Scan and ISR operations.

Four dedicated pins are reserved on each device for use by the Test Access Port (TAP).

Boundary Scan

The PSI family supports Bypass, Sample/Preload, Extest, Intest, Idcode and Usercode boundary scan instructions. The JTAG interface is shown in *Figure 16*.

Frequency Agile devices also allow system level diagnosis of transceiver interface and interconnect. Boundary scan is supported on the LVCMOS signals, inputs and outputs. The high-speed serial inputs are not part of the JTAG test chain.

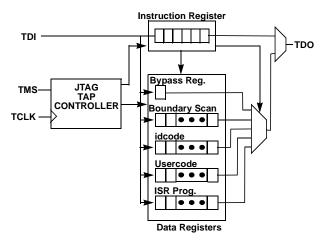


Figure 16. JTAG Interface.

In-System Reprogramming[™] (*ISR*[™])

In-System Reprogramming is the combination of the capability to program or reprogram a device on-board, and the ability to support design changes without changing the system timing or device pinout. This combination means design changes during debug or field upgrades do not cause board respins. The PSI family implements ISR by providing a JTAG compliant interface for on-board programming, robust routing resources for pinout flexibility, and a simple timing model for consistent system performance.

Configuration

The CPLD block in each device of the PSI family is designed with Self-Boot capability. An embedded on-chip EEPROM is used to store configuration data. For PSI devices, programming is defined as the loading of a user's design into the internal EEPROM. Configuration, on the other hand, is defined as the loading of a user's design into the volatile CPLD block.

Configuration can begin in two ways. It can be initiated by toggling the *Reconfig* pin from LOW to HIGH, or by issuing the appropriate IEEE std 1149.1 JTAG instruction to the PSI device via the JTAG interface. There are two IEEE std 1149.1 JTAG instructions that initiate configuration of the PSI. The *Self Config* instruction causes the PSI to (re)configure with data store in the internal EEPROM. The *Load Config* instruction causes the PSI to (re)configure with data provided by other sources such as a PC, Automatic Test Equipment (ATE), or an embedded micro-controller/processor via the JTAG port.

There are multiple configuration options available for issuing the IEEE std 1149.1 JTAG instructions to the PSI. The first method is to use a PC with the C3 ISR programming cable and software. With this method, the ISR pins of the PSI devices in the system are routed to a connector at the edge of the printed circuit board. The C3 ISR programming cable is then connected between the PC and this connector. A simple configuration file instructs the ISR software of the programming operations to be performed on the PSI devices in the system. The ISR software then automatically completes all of the necessary data manipulations required to accomplish configuration, reading, verifying, and other ISR functions. For more information on the Cypress ISR interface, see the Programming/ISR application notes at http://www.cypress.com/pld/pldappnotes.html.

For systems with embedded controllers/processors, a controller/processor may be used to configure the PSI. The PSI ISR software assists in this method by converting the device HEX file into the ISR serial stream that contains the ISR instruction information and the addresses and data of locations to be configured. The controller/processor then simply directs this ISR stream to the chain of PSI devices to complete the desired reconfiguration or diagnostic operations. Contact your local sales office for information on availability of this option.

Programming

The on-chip EEPROM device of the CPLD block is programmed by issuing the appropriate IEEE std 1149.1 JTAG instruction. This can be done automatically using ISR/STAPL software. The configuration bits are sent from a PC through the JTAG port into the PSI via the C3 ISR programming cable. The data is then passed to the internal EEPROM through the Non-Volatile (NV) port of the CPLD block. For more information on how to program the PSI through ISR/STAPL, please refer to the ISR/STAPL User Guide.

Third-Party Programmers

Cypress support is available on a wide variety of third-party programmers. All major programmers (including BP Micro, System General, Hi-Lo) support the PSI family.

Development Software Support

Warp®

Warp is a state-of-the-art design environment for designing with Cypress programmable logic. Warp utilizes a subset of IEEE 1076/1164 VHDL and IEEE 1364 as the Hardware Description Language (HDL) for design entry. Warp accepts VHDL or Verilog input, synthesizes and optimizes the entered design, and outputs a configuration bitstream for the desired Delta39K device. For simulation, Warp provides a graphical waveform simulator as well as VHDL and Verilog Timing Models.

VHDL and Verilog are open, powerful, non-proprietary Hardware Description Languages (HDLs) that are standards for behavioral design entry and simulation. HDL allows designers to learn a single language that is useful for all facets of the design process.

Third-Party Software

Cypress products are supported in a number of third-party design entry and simulation tools. Refer to the third-party software data sheet or contact your local sales office for a list of currently supported third party vendors.

Document #: 38-02021 Rev. *B Page 20 of 58

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature-65°C to +150°C

Soldering Temperature220°C

Ambient Temperature with

Power Applied-40°C to +85°C

Junction Temperature135°C

V_{CC} relative to Ground Potential-0.5V to 4.2V

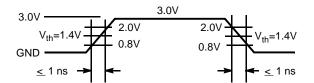
V_{CCIO} relative to Ground Potential-0.5V to 4.6V

DC Voltage Applied to Outputs in High Z State -0.5V to 4.5V

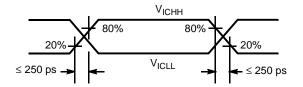
Output Current into LVCMOS Outputs (LOW).	30 mA
DC Input voltage	0.5V to 4.5V
DC Current into Outputs	± 20 mA ^[4]
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-Up Current	> 200 mA

Operating Range

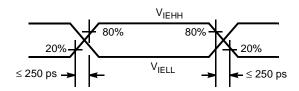
Range	Ambient Temperature	V _{CC}	V_{DDQ}
Commercial	0°C to +70°C	3.3V ± 10%	1.4V to 1.6V


Operating Range

Range	Ambient Temperature	Junction Temperature	Output Condition	V _{CCIO}	V _{CC}	V _{CCJTAG} / V _{CCCNFG}	V _{CCPLL}	V _{CEP}
	0°C to +70°C	0°C to +85°C	3.3V	$3.3V \pm 0.3V$				
Commercial			2.5V	2.5V ± 0.2V	3.3V	Same as	Same as	3.3V
Commercial			1.8V	1.8V ± 0.15V	0.3V	V _{CCIO}	V_{CC}	± 0.3V
			1.5V	1.5V ± 0.1V				


Notes:

^{4.} DC current into outputs is 36 mA with HSTL III and 48 mA with HSTL IV.


AC Test Loads and Waveforms to High-Speed PSI Transceiver Block

(a) LVTTL Input Test Waveform

(b) CML Input Test Waveform

(c) LVPECL Input Test Waveform

(b) CML AC Test Load

Document #: 38-02021 Rev. *B

Programmable Serial Interface (High Speed Devices) **PRELIMINARY**

Electrical Characteristics Over the Operating Range

DC Characteristics

			V _{CCIO} = 3.3V		V _{CCIO}	= 2.5V	V _{CC}	10 = BV	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{DRINT}	Data Retention V _{CC} Voltage (config data may be lost below this)		1.5		1.5		1.5		V
V _{DRIO}	Data Retention V _{CCIO} Voltage (config data may be lost below this)		1.2		1.2		1.2		V
I _{IX}	Input Leakage Current	$GND \le V_1 \le 3.6V$	-10	10	-10	10	-10	10	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_CCIO$	-10	10	-10	10	-10	10	μΑ
I _{OS} ^[5]	Output Short Circuit Current	V _{CCIO} = Max., V _{OUT} = 0.5V		-160		-160		-160	mA
I _{BHL}	Input Bus Hold LOW Sustaining Current	$V_{CC} = Min., V_{PIN} = V_{IL}$	+40		+30		+25		μΑ
I _{BHH}	Input Bus Hold HIGH Sustaining Current	$V_{CC} = Min., V_{PIN} = V_{IH}$	-40		-30		-25		μΑ
I _{BHLO}	Input Bus Hold LOW Overdrive Current	V _{CC} = Max.		+250		+200		+150	μΑ
Івнно	Input Bus Hold HIGH Overdrive Current	V _{CC} = Max.		-250		-200		-150	μА

Capacitance

Parameter	Description	Test Conditions	Min.	Max.	Unit
C _{I/O}	Input/Output Capacitance	V _{in} = V _{CCIO} @ f = 1 MHz 25°C		10	pF
C _{PCI}	PCI compliant I/O Capacitance	V _{in} = V _{CCIO} @ f = 1 MHz 25°C		8	pF
C _{CLK}	Clock Signal Capacitance	V _{in} = V _{CCIO} @ f = 1 MHz 25°C	5	12	pF
C _{INPECL}	PECL Input Capacitance	V _{CC} = 3.3V @ f = 1 MHz 25°C		4	pF
C _{SD1}	SD Pin Input Capacitance	V _{CC} = 3.3V @ f = 1 MHz 25°C		5	pF
C _{INC1}	CML Input Capacitance	V _{CC} = 3.3V @ f = 1 MHz 25°C		4	pF

DC Specifications - Power

Parameter	Device	Description	Test Conditions	Standby	Typical	Unit
I _{CC2} ^[6]	25G01K100	Active Power Supply Current	Frequency = Max Commercial	16	800	mA
	25G02K100	Active Power Supply Current	Frequency = Max Commercial	22	1200	mA

Notes:

5. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT}=0.5V has been chosen to avoid test problems caused by tester ground degradation. Tested initially and after any design or process changes that may affect these parameters. Typical I_{CC} is measured with V_{CC} = 3.3V, T_A = 25°C, RFEN = LOW, and outputs unloaded.

Document #: 38-02021 Rev. *B Page 23 of 58

DC Characteristics (I/O)

Input/	V _{REI}	_F (V)		V	OH (V)	Vol	_ (V)	V _{IH}	(V)	٧	_{IL} (V)
Output Standard	Min.	Мах.	V _{CCIO} (V)	@ l _{OH} =	V _{OH} (Min.)	@ l _{OL} =	V _{OL} (Max.)	Min.	Max.	Min.	Max.
LVTTL			3.3	–4 mA	2.4	4 mA	0.4	2.0V	V _{CCIO} +0.3	-0.3V	0.8V
LVCMOS			3.3	-0.1 mA	V _{CCIO} -0.2V	0.1 mA	0.2	2.0V	V _{CCIO} +0.3	-0.3V	0.8V
LVCMOS3			3.0	−0.1 mA	V _{CCIO} -0.2V	0.1 mA	0.2	2.0V	V _{CCIO} +0.3	-0.3V	V8.0
			2.5	–0.1 mA	2.1	0.1 mA	0.2	1.7V	V _{CCIO} +0.3	-0.3V	0.7V
LVCMOS2				−1.0 mA	2.0	1.0 mA	0.4				
				–2.0 mA	1.7	2.0 mA	0.7				
LVCMOS1			1.8	-0.1 mA	V _{CCIO} -0.2V	0.1 mA	0.2	0.65V _{CCIO}	V _{CCIO} +0.3	-0.3V	0.35V _{CCIO}
8				– 2 mA	V _{CCIO} -0.45V	2.0 mA	0.45				
3.3V PCI			3.3	−0.5 mA	0.9V _{CCIO}	1.5 mA	0.1V _{CCIO}	0.5V _{CCIO}	V _{CCIO} +0.5	-0.5V	0.3V _{CCIO}
GTL+	0.9	1.1	Note 7			Note 8	0.6	V _{REF} +0.2			V _{REF} -0.2
SSTL3 I	1.3	1.7	3.3	–8 mA	V _{CCIO} -1.1V	8 mA	0.7	V _{REF} +0.2	V _{CCIO} +0.3	-0.3V	V _{REF} -0.2
SSTL3 II	1.3	1.7	3.3	–16 mA	V _{CCIO} -0.9V	16 mA	0.5	V _{REF} +0.2	V _{CCIO} +0.3	-0.3V	V _{REF} -0.2
SSTL2 I	1.15	1.35	2.5	−7.6 mA	V _{CCIO} - 0.62V	7.6 mA	0.54	V _{REF} +1.8	V _{CCIO} +0.3	-0.3V	V _{REF} -0.1 8
SSTL2 II	1.15	1.35	2.5	–15.2 mA	V _{CCIO} -0.43V	15.2 mA	0.35	V _{REF} +1.8	V _{CCIO} +0.3	-0.3V	V _{REF} -0.1 8
HSTL I	0.68	0.9	1.5	–8 mA	V _{CCIO} -0.4V	8 mA	0.4	V _{REF} +1.0	V _{CCIO} +0.3	-0.3V	V _{REF} -0.1
HSTL II	0.68	0.9	1.5	–16 mA	V _{CCIO} -0.4V	16 mA	0.4	V _{REF} +1.0	V _{CCIO} +0.3	-0.3V	V _{REF} -0.1
HSTL III	0.68	0.9	1.5	–8 mA	V _{CCIO} -0.4V	24 mA	0.4	V _{REF} +1.0	V _{CCIO} +0.3	-0.3V	V _{REF} -0.1
HSTL IV	0.68	0.9	1.5	–8 mA	V _{CCIO} -0.4V	48 mA	0.4	V _{REF} +1.0	V _{CCIO} +0.3	-0.3V	V _{REF} -0.1

Parameter	Description	Test Conditions	Min.	Max.	Unit
SD Pin LVTTL In	puts				
V _{IHT}	Input HIGH Voltage	Low = 2.0V, High = $V_{CC} + 0.5V$	2.0	V _{CC} - 0.3	V
V _{ILT}	Input LOW Voltage	Low = -3.0 V, High = 0.8 V	-0.3	0.8	V
I _{IHT}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$		50	μΑ
I _{ILT}	Input LOW Current	$V_{CC} = Max., V_{IN} = 0V$		-50	μΑ
REFCLK LVPEC	L Compatible Inputs				
V _{INSGLE}	Input Single-ended Swing		200	600	mV
V _{DIFFE}	Input Differential Voltage		400	1200	mV
V _{IEHH}	Highest Input HIGH Voltage		V _{CC} – 1.2	$V_{CC} - 0.3$	V
V _{IELL}	Lowest Input LOW Voltage		V _{CC} – 2.0	V _{CC} – 1.45	V
I _{IEH}	Input HIGH Current	V _{IN} = V _{IEHH} Max.		750	μΑ
I _{IEL}	Input LOW Current	V _{IN} = V _{IELL} Min.	-200		μΑ
General Transmi	tter Differential CML Compatible Outputs	(All High-Speed PSI)			
V _{OHC}	Output HIGH Voltage (V _{CC} Referenced)	100Ω differential load	V _{CC} - 0.5	V _{CC} – 0.15	V
V _{OLC}	Output LOW Voltage (V _{CC} Referenced)	100Ω differential load	V _{CC} – 1.2	V _{CC} - 0.7	V
V _{SGLCO}	Output Single-ended Voltage	100Ω differential load	280	800	mV

Notes:

- 7. See "Power-up Sequence Requirements" for V_{CCIO} requirement. 8. 25Ω resistor terminated to termination voltage of 1.5V.

Parameter	Description	Test Conditions	Min.	Max.	Unit
Transmitter Dif	ferential CML Compatible Outputs (P25G01	K100, P25G02K100 only)	•		_
V _{DIFF}	Differential Output	100Ω differential load	1000	1600	mV
I _{ACCM}	AC Common Mode Current			5	μΑ
V _{ACCM}	AC Common Mode Voltage			25	mV
Z _D	Differential Output Impedance		75	125	Ω
Z _{SE}	Single Ended Output Impedance		30	75	Ω
Z _{MSE}	Single Ended Output Impedance Matching Within a Single Lane			10	%
I _{DSHORT}	Short Circuit Current		-100	100	mA
Transmitter Dif	ferential CML Compatible Outputs (S25G01	K100, S25G02K100 only)			
V _{DIFFOC}	Output Differential Swing	100Ω differential load	560	1500	mV
General Receiv	ver Differential CML Compatible Inputs (All I	ligh-Speed PSI)			•
V _{INSGLC}	Input Single-ended Swing		25	600	mV
V _{ICHH}	Highest Input HIGH Voltage			V _{CC}	V
V _{ICLL}	Lowest Input LOW Voltage		1.2		V
I _{ICH}	Input HIGH Current	V _{IN} = V _{ICHH} Max.		47	μΑ
I _{ICL}	Input LOW Current	V _{IN} = V _{ICLL} Min.		20	μΑ
Receiver Differ	rential CML Compatible Inputs (P25G01K100), P25G02K100 only)			
V _{RSENSE}	Input Sensitivity		175		mV
Z _{VTT}	V _{TT} Impedance			30	Ω
L _{DR}	Differential Return Loss		10		dB
L _{CMR}	Common Mode Return Loss		6		dB
V _{RSD}	Voltage Threshold		20		mV
V _{RMAX}	Maximum Input Voltage (p-p)			1.6	V
	ential CML Compatible Inputs (S25G01K100), S25G02K100 only)	•	•	
V _{DIFFC}	Input Differential Voltage		50	1200	mV

Configuration Parameters

Parameter	Description	Min.	Unit
t _{RECONFIG}	Reconfig pin LOW time before it goes HIGH	200	ns

Power-up Sequence Requirements

- \bullet Upon power-up, all the outputs remain three-stated until all the V_{CC} pins have powered-up to the nominal voltage and the part has completed configuration.
- The part will not start configuration until V_{CC}, V_{CCIO}, V_{CCJTAG}, V_{CCNFG}, V_{CCPLL} and VCEPVCEP have reached nominal voltage.
- V_{CC} pins can be powered up in any order. This includes V_{CC} , V_{CCIO} , V_{CCJTAG} , V_{CCCNFG} , V_{CCPLL} and VCEP.
- \bullet All $V_{\mbox{\scriptsize CCIO}} s$ on a bank should be tied to the same potential and powered up together.
- All V_{CCIO}s (even the unused banks) need to be powered up to at least 1.5V before configuration has completed.
- Maximum ramp time for all V_{CC}s should be 0V to nominal voltage in 100 ms.

Programmable Serial Interface (High Speed Devices)

Switching Characteristics

Timing Parameter Values

Parameter	Description	Min.	Max.	Unit
Combinat	orial Mode Parameters			
t _{PD}	Delay from any pin input, through any cluster on the channel associated with that pin input, to any pin output on the horizontal or vertical channel associated with that cluster		7.5	ns
t _{EA}	Global control to output enable		5.0	ns
t _{ER}	Global control to output disable		5.0	ns
t _{PRR}	Asynchronous macrocell RESET or PRESET recovery time from any pin input on the horizontal or vertical channel associated with the cluster the macrocell is in	6.0		ns
t _{PRO}	Asynchronous macrocell RESET or PRESET from any pin input on the horizontal or vertical channel associated with the cluster that the macrocell is in to any pin output on those same channels	10		ns
t _{PRW}	Asynchronous macrocell RESET or PRESET minimum pulse width, from any pin input to a macrocell in the farthest cluster on the horizontal or vertical channel the pin is associated with	3.6		ns
Synchrono	us Clocking Parameters			
t _{MCS}	Set-up time of any input pin to a macrocell in any cluster on the channel associated with that input pin, relative to a global clock	3.0		ns
t _{MCH}	Hold time of any input pin to a macrocell in any cluster on the channel associated with that input pin, relative to a global clock	0.0		ns
t _{MCCO}	Global clock to output of any macrocell to any output pin on the horizontal or vertical channel associated with the cluster that macrocell is in		6.0	ns
t _{IOS}	Set-up time of any input pin to the I/O cell register associated with that pin, relative to a global clock	1.0		ns
t _{IOH}	Hold time of any input pin to the I/O cell register associated with that pin, relative to a global clock	1.0		ns
t _{IOCO}	Clock to output of an I/O cell register to the output pin associated with that register		4.0	ns
t _{SCS}	Macrocell clock to macrocell clock through array logic within the same cluster	4.0		ns
t _{SCS2}	Macrocell clock to macrocell clock through array logic in different clusters on the same channel	5.0		ns
t _{ICS}	I/O register clock to any macrocell clock in a cluster on the channel the I/O register is associated with	5.0		ns
tocs	Macrocell clock to any I/O register clock on the horizontal or vertical channel associated with the cluster that the macrocell is in	5.0		ns
t _{CHZ}	Clock to output disable (high-impedance)		3.5	ns
t _{CLZ}	Clock to output enable (low-impedance)	2.0		ns
f_{MAX}	Maximum frequency with internal feedback—within the same cluster		250	MHz
f _{MAX2}	Maximum frequency with internal feedback—within different clusters at the opposite ends of a horizontal or vertical channel		200	MHz
Product To	erm Clocking Parameters			
t _{MCSPT}	Set-up time for macrocell used as input register, from input to product term clock	3.0		ns
t _{MCHPT}	Hold time of macrocell used as an input register	1.0		ns
t _{MCCOPT}	Product term clock to output delay from input pin		8.0	ns
t _{SCS2PT}	Register to register delay through array logic in different clusters on the same channel using a product term clock	6.5		ns

Note:

Document #: 38-02021 Rev. *B Page 26 of 58

^{9.} Add t_{CHSW} to signals making a horizontal to vertical channel switch or vice-versa.

Switching Characteristics

Timing Parameter Values (continued)

Parameter	Description	Min.	Max.	Unit						
Channel Ir	Channel Interconnect Parameters									
t _{CHSW}	Adder for a signal to switch from a horizontal to vertical channel and vice-versa		1.0	ns						
t _{CL2CL}	Cluster to Cluster delay adder (through channels and channel PIM)		2.0	ns						
Miscellane	ous Parameters									
t _{CPLD}	Delay from the input of a cluster PIM, through a macrocell in the cluster, back to a cluster PIM input. This parameter can be added to the t_{PD} and t_{SCS} parameters for each extra pass through the AND/OR array required by a given signal path		3.0	ns						
t _{MCCD}	Adder for carry chain logic per macrocell		0.25	ns						
PLL Param	eters									
t _{MCCJ}	Maximum cycle to cycle jitter time		0.50	ns						
t _{DWSA}	PLL delay with skew adjustment		0.35	ns						
t _{DWOSA}	PLL delay without any skew adjustment		0.35	ns						
t _{LOCK}	Lock time for the PLL		3.0	ms						
f _{PLLO} ^[10]	Output frequency of the PLL	6.2	266	MHz						
f _{PLLI} ^[10]	Input frequency of the PLL	25	133	MHz						

Cluster Memory Timing Parameter Values

		200					
Parameter	Description	Min. Max.		Unit			
Asynchronous Mode Parameters							
t _{CLMAA}	Cluster memory access time. Delay from address change to read data out		11	ns			
t _{CLMPWE}	Write enable pulse width	6.0		ns			
t _{CLMSA}	Address set-up to the beginning of write enable	2.0		ns			
t _{CLMHA}	Address hold after the end of write enable with both signals from the same I/O block	1.0		ns			
t _{CLMSD}	Data set-up to the end of write enable	6.0		ns			
t _{CLMHD}	Data hold after the end of write enable	0.5		ns			
Synchronous N	Mode Parameters						
t _{CLMCYC1}	Clock cycle time for flow-through read and write operations (from macrocell register through cluster memory back to a macrocell register in the same cluster)	10		ns			
t _{CLMCYC2}	Clock cycle time for pipelined read and write operations (from cluster memory input register through the memory to cluster memory output register) 5.0			ns			
t _{CLMS}	Address, data, and WE set-up time of pin inputs, relative to a global clock	3.0		ns			
t _{CLMH}	Address, data, and WE hold time of pin inputs, relative to a global clock			ns			
t _{CLMDV1}	Global clock to data valid on output pins for flow through data	on output pins for flow through data 11		ns			
t _{CLMDV2}	Global clock to data valid on output pins for pipelined data		7.5	ns			

Note:

Document #: 38-02021 Rev. *B Page 27 of 58

^{10.} Refer to page 15 and the application note titled "PSI PLL and Clock Tree" for details on the PLL operation & specification.

Cluster Memory Timing Parameter Values (continued)

t _{CLMMACS1}	Cluster memory input clock to macrocell clock in the same cluster	8.0	ns
t _{CLMMACS2}	Cluster memory output clock to macrocell clock in the same cluster	5.0	ns
t _{MACCLMS1}	Macrocell clock to cluster memory input clock in the same cluster	4.0	ns
t _{MACCLMS2}	Macrocell clock to cluster memory output clock in the same cluster	6.5	ns
Internal Paran	neters		
t _{CLMCLAA}	Asynchronous cluster memory access time from input of cluster to output of cluster		ns

Channel Memory Timing Parameter Values

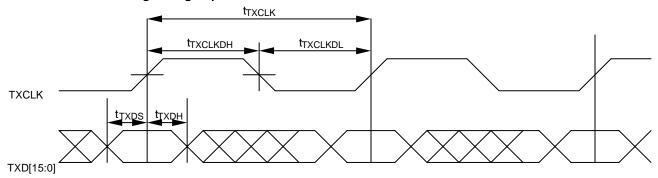
Parameter	Description	Min.	Max.	Unit
Dual-Port As	ynchronous Mode Parameters			
t _{CHMAA}	Channel memory access time. Delay from address change to read data out		11	ns
t _{CHMPWE}	Write enable pulse width	6.0		ns
t _{CHMSA}	Address set-up to the beginning of write enable	2.0		ns
t _{CHMHA}	Address hold after the end of write enable with both signals from the same I/O block	1.0		ns
t _{CHMSD}	Data set-up to the end of write enable	6.0		ns
t _{CHMHD}	Data hold after the end of write enable	0.5		ns
t _{CHMBA}	Channel memory asynchronous dual port address match (busy access time)		9.0	ns
Dual-Port Sy	nchronous Mode Parameters			
t _{CHMCYC1}	Clock cycle time for flow through read and write operations (from macrocell register through channel memory back to a macrocell register in the same cluster)	10		ns
t _{CHMCYC2}	Clock cycle time for pipelined read and write operations (from channel memory input register through the memory to channel memory output register)	5.0		ns
t _{CHMS}	Address, data, and WE set-up time of pin inputs, relative to a global clock	3.3		ns
t _{CHMH}	Address, data, and WE hold time of pin inputs, relative to a global clock	0.0		ns
t _{CHMDV1}	Global clock to data valid on output pins for flow through data		11	ns
t _{CHMDV2}	Global clock to data valid on output pins for pipelined data		7.5	ns
t _{CHMBDV}	Channel memory synchronous dual-port address match (busy, clock to data valid)		9.0	ns
t _{CHMMACS1}	Channel memory input clock to macrocell clock in the same cluster	9.0		ns
t _{CHMMACS2}	Channel memory output clock to macrocell clock in the same cluster	5.0		ns
t _{MACCHMS1}	Macrocell clock to channel memory input clock in the same cluster	5.0		ns
t _{MACCHMS2}	Macrocell clock to channel memory output clock in the same cluster	7.0		ns
Synchronous	s FIFO Data Parameters			
tCHMCLK	Read and write minimum clock cycle time	5.0		ns
t _{CHMFS}	Data, read enable, and write enable set-up time relative to pin inputs	4.0		ns
t _{CHMFH}	Data, read enable, and write enable hold time relative to pin inputs	0.0		ns
t _{CHMFRDV}	Data access time to output pins from rising edge of read clock (read clock to data valid)	7.0		
t _{CHMMACS}	Channel memory FIFO read clock to macrocell clock for read data	5.0		ns
t _{MACCHMS}	Macrocell clock to channel memory FIFO write clock for write data	5.0		ns

Channel Memory Timing Parameter Values (continued)

Synchronous FIFO Flag Parameters					
t _{CHMFO}	Read or write clock to respective flag output at output pins	11		ns	
t _{CHMMACF}	Read or write clock to macrocell clock with FIFO flag	9		ns	
t _{CHMFRS}	Master Reset Pulse Width	5.0		ns	
t _{CHMFRSR}	Master Reset Recovery Time		4.0	ns	
t _{CHMFRSF}	Master Reset to Flag and Data Output Time		10.0	ns	
t _{CHMSKEW1}	Read/Write Clock Skew Time for Full Flag		2.0	ns	
t _{CHMSKEW2}	Read/Write Clock Skew Time for Empty Flag		2.0	ns	
t _{CHMSKEW3}	Read/Write Clock Skew Time for Boundary Flags		5.0	ns	
Internal Par	ameters				
t _{CHMCHAA}	Asynchronous channel memory access time from input of channel memory to output of channel memory	7.0		ns	

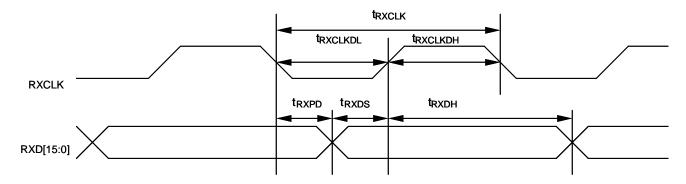
High-Speed PSI Transceiver Timing Parameter Values

Parameter	Description	Min.	Max.	Unit		
Transceiver Interfacing Timing Parameters						
t _{TS}	TXCLK Frequency (must be frequency coherent to REFCLK)	154.5	156.5	MHz		
t _{TXCLK}	TXCLK Period	6.38	6.47	ns		
t _{TXCLKD}	TXCLK Duty Cycle	40	60	%		
t _{TXCLKR}	TXCLK Rise Time	0.3	1.5	ns		
t _{TXCLKF}	TXCLK Fall Time	0.3	1.5	ns		
t _{TXDS}	Write Data Set-up to ↑ of TXCLK	1.5		ns		
t _{TXDH}	Write Data Hold from ↑ of TXCLK	.5		ns		
t _{RS}	RXCLK Frequency	154.5	156.5	MHz		
t _{RXCLK}	RXCLK Period	6.38	6.47	ns		
t _{RXCLKD}	RXCLK Duty Cycle	43	57	%		
t _{RXCLKR}	RXCLK Rise Time ^[11]	0.1	1.5	ns		
t _{RXCLKF}	RXCLK Fall Time ^[11]	0.1	1.5	ns		
t _{RXDS}	Recovered Data Set-up with regard to ↑ of RXCLK	2.2		ns		
t _{RXDH}	Recovered Data Hold with regard to ↑ of RXCLK	2.2		ns		
t _{RXPD}	Valid Propagation delay	-1.0	1.0	ns		


Note

^{11.} For "slow slew rate" output delay adjustments, refer to Warp software's static timing analyzer results.

High-Speed PSI Transceiver Timing Parameter Values


Parameter	r Description			Unit
REFCLK Timing Paramet	ers			
t _{REF}	REFCLK Input Frequency	154.5	156.5	MHz
t _{REFP}	REFCLK Period	6.38	6.47	ns
t _{REFD}	REFCLK Duty Cycle	35	65	%
t _{REFT}	REFCLK Frequency Tolerance (relative to received serial data)	-100	+100	ppm
t _{REFR}	REFCLK Rise Time	0.3	1.5	ns
t _{REFF}	REFCLK Fall Time	0.3	1.5	ns
CML Serial Outputs (P250	- 601K100,P25G02K100 only)			
t _{DRF}	Driver Rise/Fall Time (20–80% rise, 80–20% fall, 100Ω balanced load)			ps
t _{JD}	Deterministic Jitter		0.17	UI
t _{JT}	Total Jitter		0.35	UI
t _{UID}	Unit Interval	400	400	ps
CML Serial Outputs (S250	601K100, S25G02K100 only)			
t _{RISE}	CML Output Rise Time (20–80%, 100Ω balanced load)	60	170	ps
t _{FALL}	CML Output Fall Time (80–20%, 100Ω balanced load)	60	170	ps
t _{TJ}	Total Output Jitter (p-p)		0.05	UI
	Total Output Jitter (rms)		0.007	UI
CML Serial Inputs (P25G0	1K100, P25G02K100 only)			
t _{EYE}	Eye opening			ps
t _{JDR}	Deterministic Jitter at Receiver		0.41	UI
$t_{\rm JTR}$			0.65	UI

Transmit Interface Timing for High-Speed PSI

Document #: 38-02021 Rev. *B

Receive Interface timing for High-Speed PSI

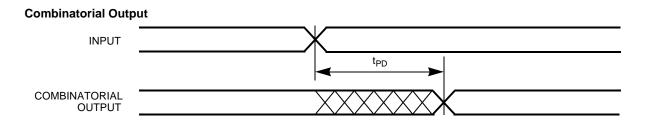
Input & Output Standard Timing Delay Adjustments

All the timing specifications in this data sheet are specified based on 3.3V PCI compliant inputs and outputs (fast slew rates^[12]). Apply following adjustments if the inputs and outputs are configured to operate at other standards.

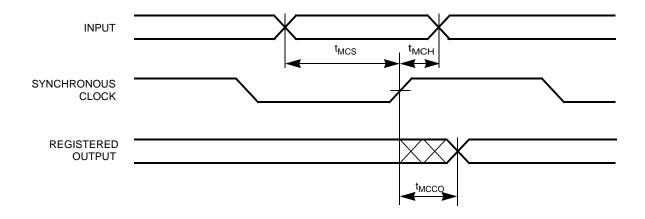
Input/Output Standard	Output Delay Adjustments			Input Delay Adjustments		
	t _{IOD}	t _{EA}	t _{ER}	t _{IOIN}	t _{CKIN}	t _{IOREGPIN}
LVTTL	0.2	0	0	0	0	0
LVCMOS	0.2	0	0	0	0	0
LVCMOS3	0.3	0.05	0	0.1	0.1	0.2
LVCMOS2	0.5	0.1	0	0.2	0.2	0.4
LVCMOS18	2.1	0.7	0.1	0.5	0.4	0.3
3.3V PCI	0	0	0	0	0	0
GTL+	0.6 ^[13]	0.6 ^[13]	0.9 ^[13]	0.5	0.4	0.2
SSTL3 I	-0.3	0.3	0.1	0.5	0.3	0.3
SSTL3 II	-0.4	0.2	0	0.5	0.3	0.3
SSTL2 I	-0.1	0.4	0	0.9	0.5	0.6
SSTL2 II	-0.2	0.2	0	0.9	0.5	0.6
HSTL I	0.6	0.9	0.5	0.5	0.5	0.3
HSTL II	0.4	0.8	0.5	0.5	0.5	0.3
HSTL III	0.6	0.5	0.1	0.5	0.5	0.3
HSTL IV	0.7	0.6	0	0.5	0.5	0.3

Notes:

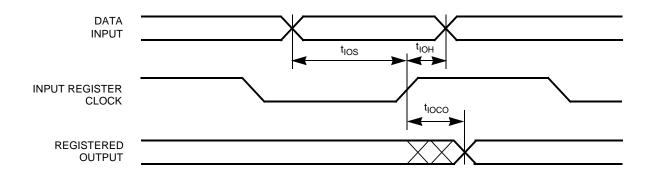
These delays are based on falling edge output. The rising edge delay depends on the size of pull up resistor and termination voltage.
 RXCLK rise time and fall time are measured at the 20-80 percentile region of the rising and falling edge of the clock signal



PRELIMINARY


Programmable Serial Interface (High Speed Devices)

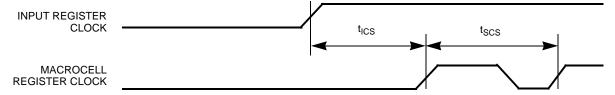
Switching Waveforms


General Switching Waveforms

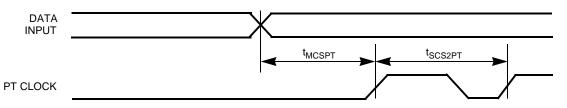
Registered Output with Synchronous Clocking (Macrocell)

Registered Input in I/O Cell

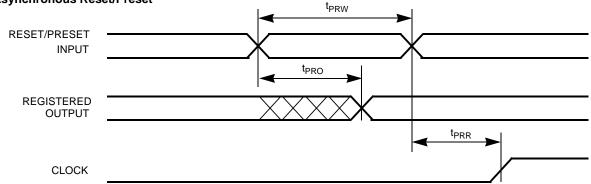
Document #: 38-02021 Rev. *B

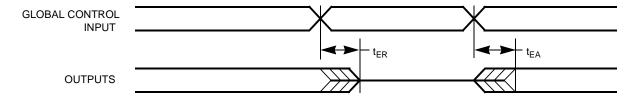


PRELIMINARY

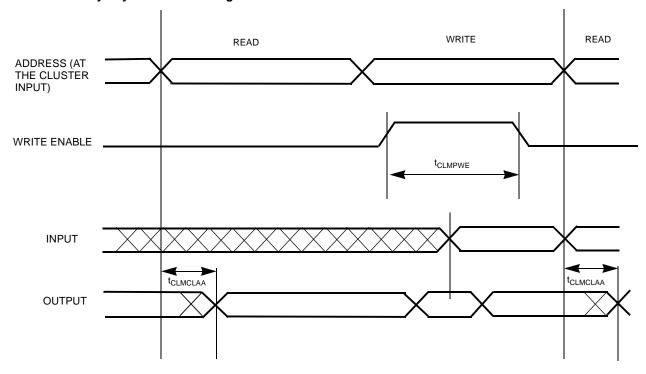

Programmable Serial Interface NARY (High Speed Devices)

Switching Waveforms (continued)

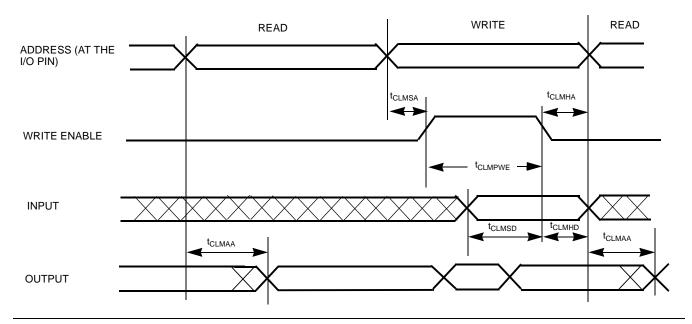

Clock to Clock


PT Clock to PT Clock

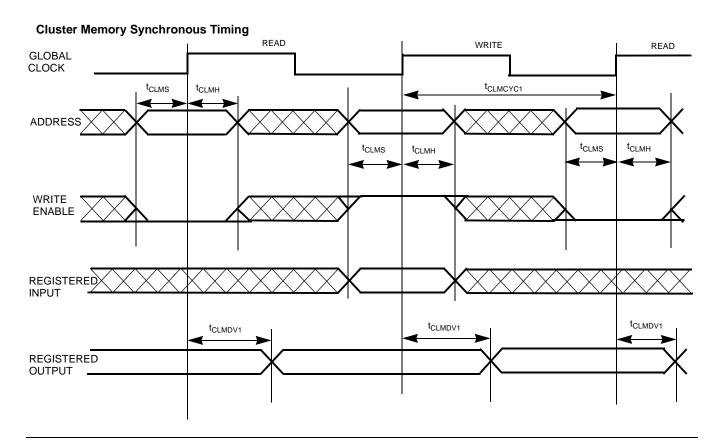
Asynchronous Reset/Preset

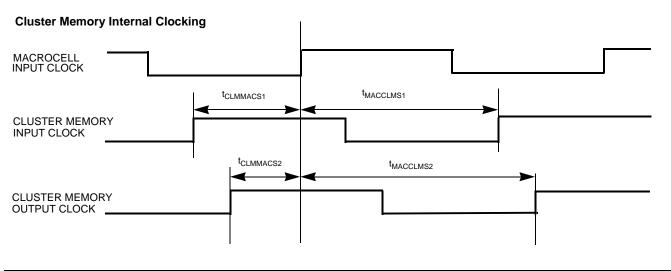


Output Enable/Disable

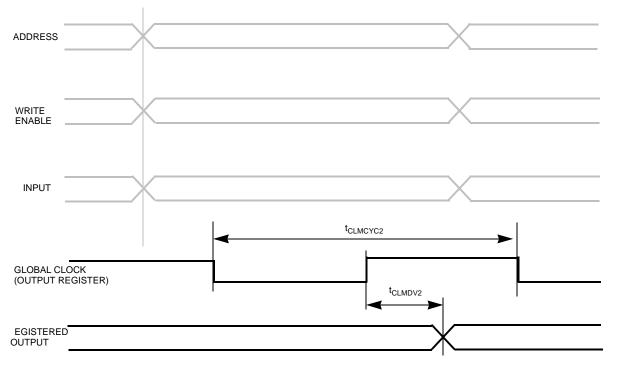


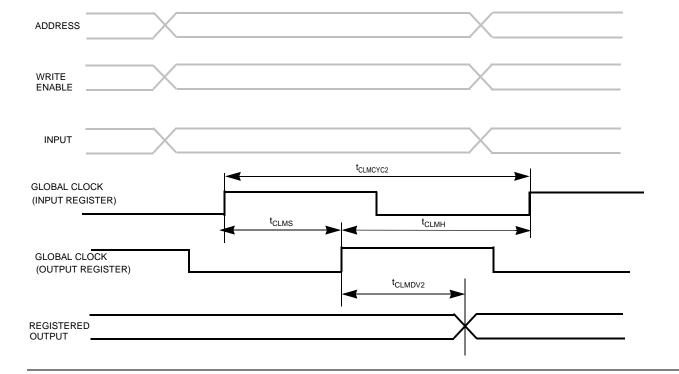
Switching Waveforms (continued)


Cluster Memory Asynchronous Timing

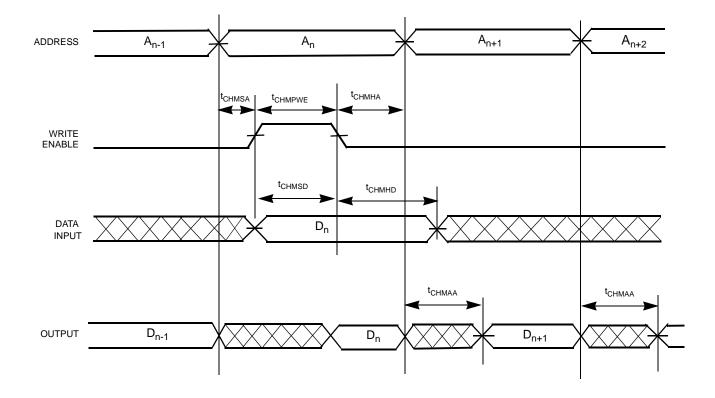


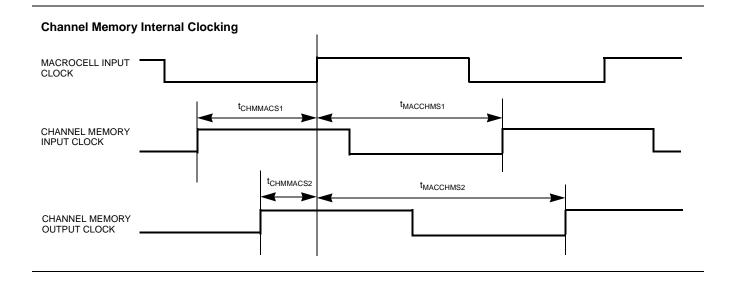
Cluster Memory Asynchronous Timing 2

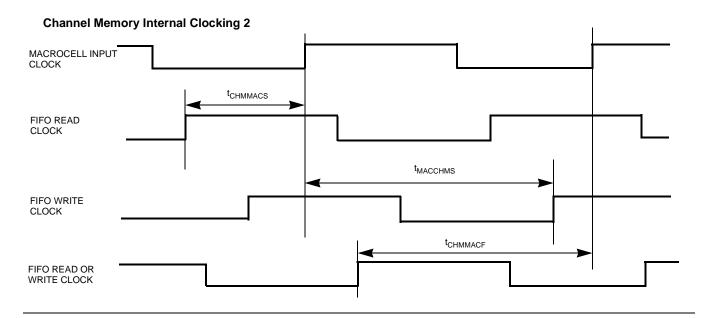

Switching Waveforms (continued)

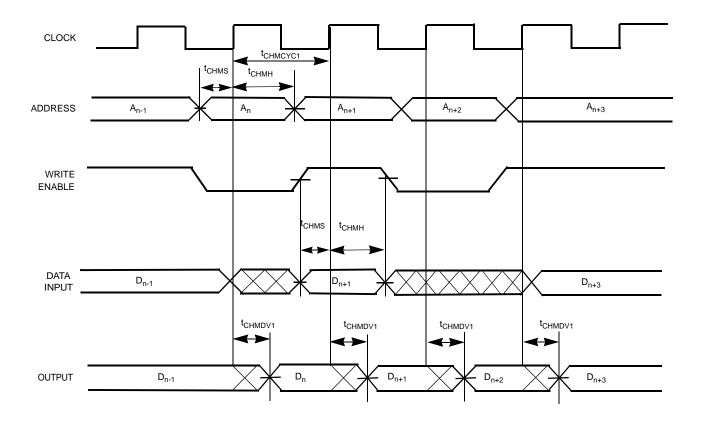


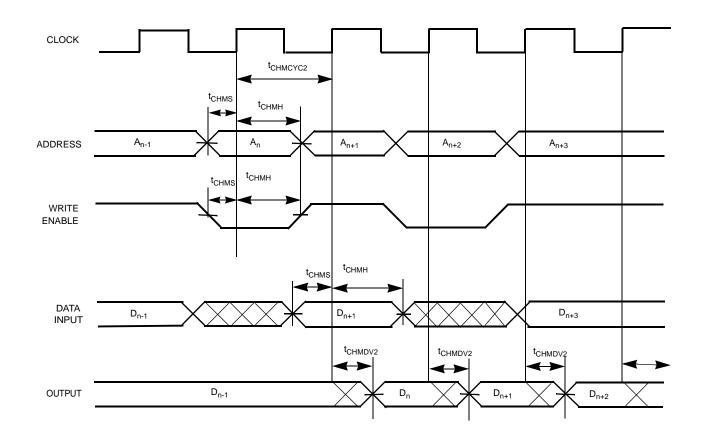
Switching Waveforms (continued)

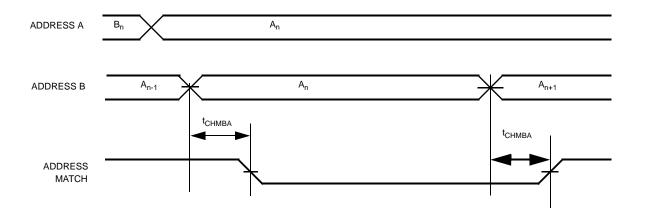

Cluster Memory Output Register Timing (Asynchronous Inputs)



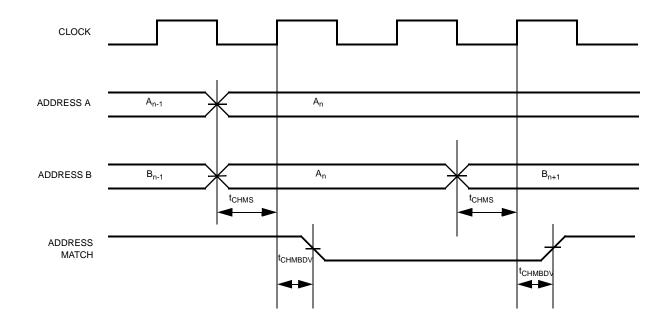

Cluster Memory Output Register Timing (Synchronous Inputs)

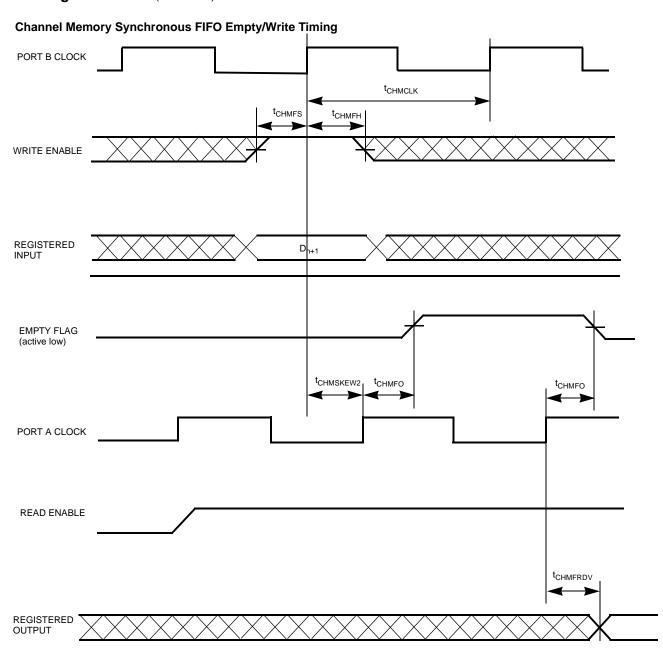

Channel Memory DP Asynchronous Timing

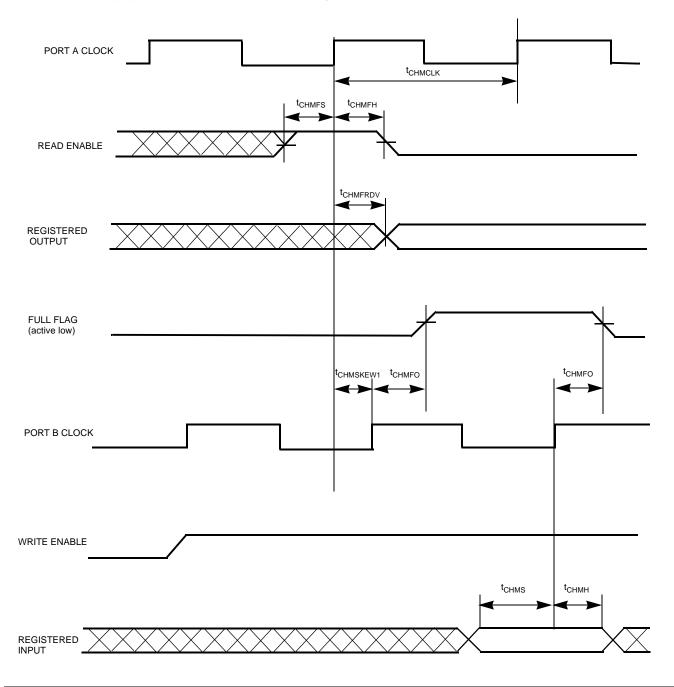



Channel Memory DP SRAM Flow Through R/W Timing

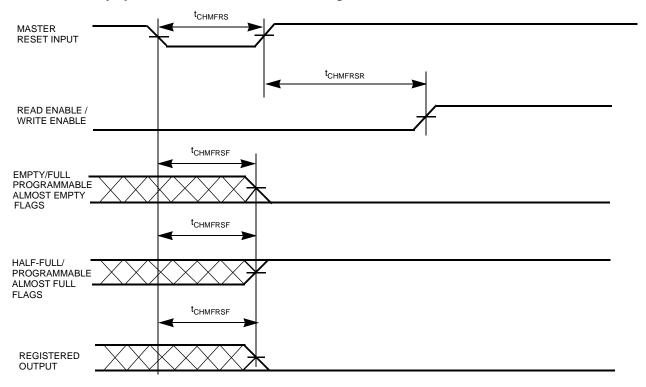
Channel Memory DP SRAM Pipeline R/W Timing




Dual-Port Asynchronous Address Match Busy Signal


Document #: 38-02021 Rev. *B Page 39 of 58

Dual-Port Synchronous Address Match Busy Signal



Channel Memory Synchronous FIFO Full/Read Timing

Channel Memory Synchronous FIFO Programmable Flag Timing PORT B CLOCK t_{CHMCLK} t_{CHMFS} t_{CHMFH} WRITE ENABLE PROGRAMMABLE ALMOST-EMPTY FLAG (active LOW) t_{CHMSKEW3} t_{CHMFO} t_{CHMFO} PORT A CLOCK t_{CHMFS} **READ ENABLE** PORT B CLOCK **t**CHMCLK WRITE ENABLE $t_{\hbox{\footnotesize CHMFO}}$ t_{CHMFO} PROGRAMMABLE ALMOST-FULL FLAG (active LOW) PORT A CLOCK READ ENABLE

Channel Memory Synchronous FIFO Master Reset Timing

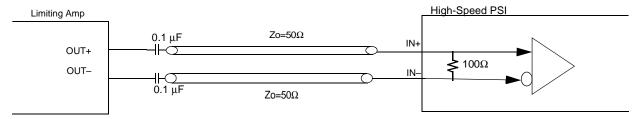


Figure 17. Serial Input Termination.

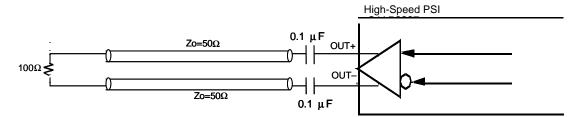


Figure 18. Serial Output Termination.

Pin and Signal Description

Name	Function	Signal Description
Standard Devi	ce Signals	
CCLK	Output	Configuration Clock for serial interface with the external boot PROM
Config_Done	Output	Flag indicating that configuration is complete
Data	Input	Pin to receive configuration data from the external boot PROM
GCLK0-1	Input	Global Input Clock signals 0 through 3
CCE	Output	Chip select for the external boot PROM
GCTL0-3	Input	Global Control signals 0 through 3
IO/V _{REF0}	Input/Output	Dual function pin: I/O or Reference Voltage for Bank 0
IO/V _{REF1}	Input/Output	Dual function pin: I/O or Reference Voltage for Bank 1
IO/V _{REF2}	Input/Output	Dual function pin: I/O or Reference Voltage for Bank 2
IO/V _{REF3}	Input/Output	Dual function pin: I/O or Reference Voltage for Bank 3
IO/V _{REF4}	Input/Output	Dual function pin: I/O or Reference Voltage for Bank 4
IO/V _{REF5}	Input/Output	Dual function pin: I/O or Reference Voltage for Bank 5
IO/V _{REF6}	Input/Output	Dual function pin: I/O or Reference Voltage for Bank 6
IO/V _{REF7}	Input/Output	Dual function pin: I/O or Reference Voltage for Bank 7
Ю	Input/Output	Input or Output pin
IO6/Lock	Input/Output	Dual function pin: I/O in Bank 6 or PLL lock output signal
MSEL	Input	Mode Select Pin
Reconfig	Input	Pin to start configuration of PSI
Reset	Output	Reset signal to interface with the external boot PROM
TCLK	Input	JTAG Test Clock
TDI	Input	JTAG Test Data In
TDO	Output	JTAG Test Data Out
TMS	Input	JTAG Test Mode Select
Transmit Path	-	
TXD[15:0]	Internal	Parallel Transmit Data Inputs. A 16-bit word, sampled by TXCLK1. TXD[15] is the most significant bit (the first bit transmitted)
TXCLK	Internal	Parallel Transmit Data Input Clock. Divide by 16 of the selected transmit bit-rate clock
Receive Path S	Signals	· · · · · · · · · · · · · · · · · · ·
RXD[15:0]	Internal	Parallel Receive Data Output. These outputs change following RXCLK↓. RXD[15] is the most significant bit of the output word, and is received first on the serial interface
RXCLK	Internal	Receive Clock Output. Divide by 16 of the bit-rate clock extracted from the received serial stream
CM_SER	Analog	Common Mode Termination. Capacitor shunt to V _{SS} for common mode noise
RXCN1	Analog	Receive Loop Filter Capacitor (Negative)
RXCN2	Analog	Receive Loop Filter Capacitor (Negative)
RXCP1	Analog	Receive Loop Filter Capacitor (Positive)
RXCP2	Analog	Receive Loop Filter Capacitor (Positive)
Transceiver Co	ontrol and Status Si	gnals
REFCLK±	Differential LVPECI input	Reference Clock. This clock input is used as the timing reference for the transmit and receive PLLs. A derivative of this input clock may also be used to clock the transmit parallel interface
LFI	Internal	Line Fault Indicator Output Signal. When LOW, this signal indicates that the selected receive data stream has been detected as invalid by either a LOW input on SD, or by the receive VCO being operated outside its specified limits

Pin and Signal Description (continued)

Name	Function	Signal Description
RESET	Internal	Reset for all logic functions except the transmit FIFO
LOCKREF	Internal	Receive PLL Lock to Reference Input Signal. When LOW, the receive PLL locks to REFCLK instead of the received serial data stream
SD	LVTTL input	Signal Detect. When LOW, the receive PLL locks to REFCLK instead of the received serial data stream
FIFO_ERR	Internal	Transmit FIFO Error Output Signal. When HIGH the transmit FIFO has either under or overflowed. The FIFO must be reset to clear the error indication
FIFO_RST	Internal	Transmit FIFO Reset Input Signal. When LOW, the in and out pointers of the transmit FIFO are set to maximum separation
PWRDN	Internal	Device Power Down Input Signal. When LOW, the logic and drivers are all disabled and placed into a standby condition where only minimal power is dissipated
Transceiver Lo	oop Control Signals	
DIAGLOOP	Internal	Diagnostic Loopback Control Input Signal. When HIGH, transmit data is routed through the receive clock and data recovery and presented at the RXD[15:0] outputs. When LOW, received serial data is routed through the receive clock and data recovery and presented at the RXD[15:0] outputs
LINELOOP	Internal	Line Loopback Control Input Signal. When HIGH, received serial data is looped back from receive to transmit after being reclocked by a recovered clock. When LINELOOP is LOW, the data passed to the OUT± line driver is controlled by LOOPA.
		When both LINELOOP and LOOPA are LOW, the data passed to the OUT± line driver is generated in the transmit shifter
LOOPA	Internal	Analog Line Loopback Input Signal. When LINELOOP is LOW and LOOPA is HIGH, received serial data is looped back from receive input buffer to transmit output buffer, but is not routed through the clock and data recovery PLL. When LOOPA is LOW, the data passed to the OUT± line driver is controlled by LINELOOP
LOOPTIME	Internal	Loop Time Mode Input Signal. When HIGH, the extracted receive bit-clock replaces transmit bit-clock. When LOW, the REFCLK input is multiplied by 16 to generate the transmit bit clock
Serial I/O		
OUT± (OUTP/OUTN)	Differential CML output	Differential Serial Data Output. This differential CML output (+3.3V referenced) is capable of driving terminated 50Ω transmission lines or commercial fiberoptic transmitter modules
IN±	Differential CML input	Differential Serial Data Input. This differential input accept the serial data stream for deserialization and clock extraction
Power		
V _{CC}	Power	+3.3V Supply (operating voltage)
GND	Ground	Signal and Power Ground
V _{CCQ}		+3.3V Quiet Power
V_{SSQ}		Quiet Ground
V_{DDQ}		+1.5V Supply for HSTL Outputs
V _{CCIO0}	Power	V _{CC} for I/O bank 0
V _{CCIO1}	Power	V _{CC} for I/O bank 1
V _{CCIO2}	Power	V _{CC} for I/O bank 2
V _{CCIO3}	Power	V _{CC} for I/O bank 3
V _{CCIO4}	Power	V _{CC} for I/O bank 4
V _{CCIO5}	Power	V _{CC} for I/O bank 5
V _{CCIO6}	Power	V _{CC} for I/O bank 6
V _{CCIO7}	Power	V _{CC} for I/O bank 7
V _{CCJTAG}	Power	V _{CC} for JTAG pins
V _{CCCNFG}	Power	V _{CC} for Configuration port

Programmable Serial Interface (High Speed Devices)

Pin and Signal Description (continued)

Name Function		Signal Description						
V_{CCPLL}	Power	V _{CC} for logic PLL						
V _{CEP} Power		V _{CC} for the Self-Boot [™] solution embedded boot PROM						

Pin Configurations

456-Ball BGA (25G01K100)

Top View

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Α	GND	HSTL- REF	107	107	107	107	HSTL- REF	107	IO7	107	HSTL- REF	HSTL- REF	106	106	106	HSTL- REF	IO5	IO5	IO5	IO/VRE F5	IO5	105	IO5	IO/VRE F5	IO5	GND	Α
В	HSTL- REF	HSTL- REF	107	HSTL- REF	107	107	107	VDDQ	107	HSTL- REF	IO6	106	106	106	106	106	IO5	105	IO5	IO5	IO5	IO/VRE F5	105	IO5	IO5	IO5	В
С	100	107	107	107	VDDQ	vcc	vccvc c	107	GCTL3	107	VDDQ	VDDQ	VDDQ	HSTL- REF	106	106	IO5	105	IO5	GCTL2	GCTL1	IO5	105	IO5	TDO	тск	С
D	100	100	100	107	VDDQ	VDDQ	VDDQ	GND	HSTL- REF	107	NC	VDDQ	vcc	106	106	106	VCPLL	VDDQ	VDDQ	VDDQ	vcc	NC	GCLK1	IO5	TMS	TDI	D
Е	100	100	100	GCTL0	GND	GND	107	GND	GND	HSTL- REF	IO6	106	106	IOP6	106	106	IO/VRE F5	105	IO5	IO5	105	IO5	VCCO5	VCCO5	VCCO5	VCJTG	Е
F	IO/VRE F0	100	100	vcc	GND																	NC	NC	NC	NC	NC	F
G	100	IO/VRE F0	vcc	VCC00	GCLK0																	NC	NC	NC	NC	NC	G
Н	100	100	vcc	VCC00	GND																	NC	VSSQ	VSSQ	NC	NC	н
J	100	100	vcc	VCC00	GND																	NC	VSSQ	VSSQ	VSSQ	NC	J
K	100	100	100	100	vcc																	VSSQ	VSSQ	VSSQ	NC	NC	К
L	100	100	100	GND	100						GND	GND	GND	GND	GND	GNPLL						NC	NC	NC	NC	NC	L
М	100	IO/VRE F0	100	GND	100						GND	GND	GND	GND	GND	GND						SD	RXCN1	RXCP1	RXCN2	RXCP2	М
N	vcc	100	100	GND	IO/VRE F0						GND	GND	GND	GND	GND	GND						NC	VCCQ	VCCQ	VCCQ	VCCQ	N
Р	IO1	IO1	IO1	IO1	100						GND	GND	GND	GND	GND	GND						NC	VSSQ	VSSQ	INP	INN	Р
R	IO1	IO1	IO1	VCCO1	GND						GND	GND	GND	GND	GND	GND						NC	VSSQ	VSSQ	VSSQ	CMSER	R
Т	IO/VRE F1	IO/VRE F1	IO1	IO1	IO1						GND	GND	GND	GND	GND	GND						VSSQ	VSSQ	VSSQ	OUTP	OUTN	Т
U	IO1	IO1	IO1	GND	GND									l		l	ı					NC	VCCQ	VCCQ	VCCQ	VCCQ	U
٧	IO1	IO1	IO/VRE F1	IO1	GND																	REF- CLKP	VCCO4	IO4	IO4	VCCO4	٧
W	IO1	IO1	IO1	IO1	GND																	REF- CLKN	VCCO4	IO4	IO4	IO4	W
Υ	IO1	IO1	VCEP	IO1	IO1																	104	VCEP	IO4	IO4	IO/VRE F4	Υ
AA	IO1	IO1	VCCO1	IO/VRE F1	GND																	104	NC	IO4	IO4	IO4	AA
AB	GND	CDONE	VCCO1	IO1	IO2	GND	GND	GND	IO2	IO/VRE F2	IO2	IO2	IO3	IO3	GND	IO3	GND	GND	GND	IO3	IO3	103	104	IO4	IO4	IO4	AB
AC	CDATA	RECON FIG	IO2	102	VCCFG	VCCO2	VCCO2	VCCO2	VCCO2	NC	IO2	IO2	IO2	VDDQ	VCCO3	VCCO3	Ю3	103	IO/VRE F3	NC	NC	VCCO4	IO/VRE F4	IO/VRE F4	IO4	IO4	AC
AD	CRST	CCLK	IO2	102	IO2	IO2	IO2	NC	VDDQ	VDDQ	IO2	IO2	IO/VRE F2	102	103	Ю3	IO3	Ю3	IO3	VCC	VCCO3	VCCO3	IO/VRE F3	103	IO3	IO3	AD
AE	CCE	MSEL	IO/VRE F2	102	IO/VRE F2	IO2	IO2	IO2	IO2	IO2	IO/VRE F2	IO2	IO2	102	IO3	Ю3	103	103	103	103	IO/VRE F3	IO3	103	103	IO/VRE F3	IO3	AE
AF	GND	IO2	102	102	IO2	IO2	IO/VRE F2	IO2	IO2	IO2	IO2	IO2	VCC	IO/VRE F3	IO3	Ю3	IO/VRE F3	103	103	IO3	103	IO3	Ю3	103	103	GND	AF
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

456-Ball BGA (25G02K100)

Top View

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Α	GND	IO/ VREF7	NC	NC	NC	NC	IO/ VREF7	NC	NC	107	IO/ VREF6	IO/ VREF6	NC	NC	NC	IO/ VREF6	IO5	IO5	IO5	IO/VRE F5	IO5	IO5	IO5	IO/VRE F5	IO5	GND	Α
В	IO/ VREF7	IO/ VREF7	NC	IO/ VREF7	NC	NC	NC	VDDQ	107	IO/ VREF6	NC	NC	IO6	NC	NC	NC	IO5	105	IO5	IO5	IO5	IO/VRE F5	IO5	IO5	IO5	IO5	В
С	IO0	NC	NC	NC	VDDQ	VCC	VCC	NC	GCTL3	107	VDDQ	VDDQ	VDDQ	IO/ VREF6	NC	NC	IO5	105	IO5	GCTL2	GCTL1	IO5	IO5	IO5	TDO	тск	С
D	100	100	100	NC	VDDQ	VDDQ	VDDQ	GND	IO/ VREF7	107	VCC	VDDQ	VCC	NC	NC	106	VCPLL	VDDQ	VDDQ	VDDQ	VCC	VDDQ	NC	IO5	TMS	TDI	D
Е	100	100	100	GCTL0	GND	GND	NC	GNDO	GND	IO/ VREF6	NC	NC	NC	IOP6	NC	106	IO/VRE F5	105	IO5	IO5	IO5	IO5	VCCO5	VCCO5	VCCO5	VCJTG	Е
F	IO/VRE F0	100	100	vcc	GND											•						SD_B	RXCP2 _B	RXCN2 _B	RXCP1 _B	RXCN1 _B	F
G	100	IO/VRE F0	vcc	VCC00	GCLK0																	VDDQ	VCCQ	vccq	VCCQ	vccq	G
Н	100	100	vcc	VCC00	GND	·																NC	VSSQ	VSSQ	INP_B	INN_B	н
J	IO0	100	VCC	VCCO0	GND																	NC	VSSQ	VSSQ	VSSQ	CMSER B	J
K	IO0	100	100	100	VCC																	VSSQ	VSSQ	VSSQ	OUTN_ B	OUTP_ B	K
L	100	100	100	GND	100						GND	GND	GND	GND	GND	GNPLL						VDDQ	VCCQ	vccq		VCCQ	L
М	100	IO/VRE F0	100	GND	100	,					GND	GND	GND	GND	GND	GND						SD	RXCN1	RXCP1	RXCN2	RXCP2	М
N	vcc	100	100	GND	IO/VRE F0	v					GND	GND	GND	GND	GND	GND						VDDQ	VCCQ	VCCQ	VCCQ	VCCQ	N
Р	IO1	IO1	IO1	IO1	100						GND	GND	GND	GND	GND	GND						NC	VSSQ	VSSQ	INP	INN	Р
R	IO1	IO1	IO1	VCCO1	GNDO						GND	GND	GND	GND	GND	GND						NC	VSSQ	VSSQ	VSSQ	CMSER	R
Т	IO/VRE F1	IO/VRE F1	IO1	IO1	IO1						GND	GND	GND	GND	GND	GND						VSSQ	VSSQ	VSSQ	OUTP	OUTN	Т
U	IO1	IO1	IO1	GND	GND												ı					VDDQ	VCCQ	VCCQ	VCCQ	VCCQ	U
V	IO1	IO1	IO/VRE F1	IO1	GND																	REF- CLKP	VCCO4	104	IO4	VCCO4	V
W	IO1	IO1	IO1	IO1	GND																	REF-	VCCO4	104	NC	NC	W
Υ	IO1	IO1	VCEP	IO1	IO1	,																IO4	VCEP	104	NC	NC	Υ
AA	IO1	IO1	VCCO1	IO/VRE F1	GNDO	,																IO4	vcc	104	NC	NC	AA
AB	GND	CDONE	VCCO1	IO1	IO2	GND	GND	GND	IO2	IO/VRE	IO2	IO2	IO3	IO3	GND	103	GND	GND	GND	IO3	IO3	IO3	104	104	NC	NC	AB
AC	CDATA	RECON	102	102	VCCFG	VCCO2	VCCO2	VCCO2	VCCO2	F2 VCC	IO2	102	IO2	VDDQ	VCCO3	VCCO3	103	103	IO/VRE	vcc	VDDQ	VCCO4		IO/VRE	NC	NC	AC
AD	CRST	FIG	102	102	IO2	IO2	IO2	VCC	VDDQ	VDDQ	IO2	IO2	IO/VRE	IO2	IO3	103	103	IO3	F3 IO3	vcc	VCCO3	VCCO3		F4 IO3	IO3	IO3	AD
AE	CCE	MSEL	IO/VRE	IO2	IO/VRE	IO2	IO2	IO2	IO2	IO2	IO/VRE	IO2	F2 IO2	IO2	IO3	103	103	103	IO3	IO3	IO/VRE	IO3	F3 IO3	IO3	IO/	IO3	AE
AF	GND	IO2	F2 IO2	IO2	F2 IO2	IO2	IO/VRE	IO2	IO2	IO2	F2 IO2	IO2	VCC	IO/VRE	IO3	103	IO/VRE	103	IO3	IO3	F3 IO3	IO3	IO3	IO3	VREF3	GND	AF
	1	2	3	4	5	6	F2 7	8	9	10	11	12	13	F3	15	16	F3 17	18	19	20	21	22	23	24	25	26	

456-Ball BGA Pin Table (continued)

456-Ball BGA Pin Table

Pin	25G01K100	25G02K100
A1	GND	GND
A2	HSTLREF	IO/VREF7
A3	107	NC
A4	IO7	NC
A5	107	NC
A6	107	NC
A7	HSTLREF	IO/VREF7
A8	107	NC
A9	107	NC
A10	IO7	107
A11	HSTLREF	IO/VREF6
A12	HSTLREF	IO/VREF6
A13	IO6	NC
A14	IO6	NC
A15	IO6	NC
A16	HSTLREF	IO/VREF6
A17	IO5	IO5
A18	IO5	IO5
A19	IO5	IO5
A20	IO/VREF5	IO/VREF5
A21	IO5	IO5
A22	IO5	IO5
A23	IO5	IO5
A24	IO/VREF5	IO/VREF5
A25	IO5	IO5
A26	GND	GND
B1	HSTLREF	IO/VREF7
B2	HSTLREF	IO/VREF7
B3	107	NC
B4	HSTLREF	IO/VREF7
B5	IO7	NC
B6	107	NC
B7	107	NC
B8	VDDQ	VDDQ
B9	107	107
B10	HSTLREF	IO/VREF6
B11	IO6	NC
B12	IO6	NC
B13	IO6	106
B14	IO6	NC

Pin	25G01K100	25G02K100
B15	IO6	NC
B16	IO6	NC
B17	IO5	IO5
B18	IO5	IO5
B19	IO5	IO5
B20	IO5	IO5
B21	IO5	IO5
B22	IO/VREF5	IO/VREF5
B23	IO5	IO5
B24	IO5	IO5
B25	IO5	IO5
B26	IO5	IO5
C1	IO0	IO0
C2	107	NC
C3	107	NC
C4	107	NC
C5	VDDQ	VDDQ
C6	VCC	VCC
C7	VCC	VCC
C8	107	NC
C9	GCTL3	GCTL3
C10	IO7	IO7
C11	VDDQ	VDDQ
C12	VDDQ	VDDQ
C13	VDDQ	VDDQ
C14	HSTLREF	IO/VREF6
C15	IO6	NC
C16	IO6	NC
C17	IO5	IO5
C18	IO5	IO5
C19	IO5	IO5
C20	GCTL2	GCTL2
C21	GCTL1	GCTL1
C22	IO5	IO5
C23	IO5	IO5
C24	IO5	IO5
C25	TDO	TDO
C26	TCK	TCK
D1	IO0	IO0
D2	IO0	IO0
D3	IO0	IO0

456-Ball BGA Pin Table (continued)

Pin	25G01K100	25G02K100
D4	107	NC
D5	VDDQ	VDDQ
D6	VDDQ	VDDQ
D7	VDDQ	VDDQ
D8	GND	GND
D9	HSTLREF	IO/VREF7
D10	107	107
D11	NC	VCC
D12	VDDQ	VDDQ
D13	VCC	VCC
D14	106	NC
D15	106	NC
D16	106	106
D17	VCPLL	VCPLL
D18	VDDQ	VDDQ
D19	VDDQ	VDDQ
D20	VDDQ	VDDQ
D21	VCC	VCC
D22	NC	VDDQ
D23	GCLK1	NC
D24	IO5	IO5
D25	TMS	TMS
D26	TDI	TDI
E1	IO0	100
E2	IO0	100
E3	IO0	100
E4	GCTL0	GCTL0
E5	GND	GND
E6	GND	GND
E7	IO7	NC
E8	GND	GNDO
E9	GND	GND
E10	HSTLREF	IO/VREF6
E11	IO6	NC
E12	IO6	NC
E13	IO6	NC
E14	IOP6	IOP6
E15	IO6	NC
E16	IO6	IO6
E17	IO/VREF5	IO/VREF5
E18	IO5	IO5

Pin	25G01K100	25G02K100
E19	IO5	IO5
E20	IO5	IO5
E21	IO5	IO5
E22	IO5	105
E23	VCCO5	VCCO5
E24	VCCO5	VCCO5
E25	VCCO5	VCCO5
E26	VCJTG	VCJTG
F1	IO/VREF0	IO/VREF0
F2	IO0	100
F3	IO0	100
F4	VCC	VCC
F5	GND	GND
F22	NC	SD_B
F23	NC	RXCP2_B
F24	NC	RXCN2_B
F25	NC	RXCP1_B
F26	NC	RXCN1_B
G1	IO0	100
G2	IO/VREF0	IO/VREF0
G3	VCC	VCC
G4	VCCO0	VCCO0
G5	GCLK0	GCLK0
G22	NC	VDDQ
G23	NC	VCCQ
G24	NC	VCCQ
G25	NC	VCCQ
G26	NC	VCCQ
H1	IO0	100
H2	IO0	100
H3	VCC	VCC
H4	VCCO0	VCCO0
H5	GND	GND
H22	NC	NC
H23	VSSQ	VSSQ
H24	VSSQ	VSSQ
H25	NC	INP_B
H26	NC	INN_B
J1	IO0	IO0
J2	IO0	IO0
J3	VCC	VCC

456-Ball BGA Pin Table (continued)

J4 VCCO0 VCCO0 J5 GND GND J22 NC NC J23 VSSQ VSSQ J24 VSSQ VSSQ J25 VSSQ VSSQ J26 NC CMSER_B K1 IO0 IO0 K2 IO0 IO0 K3 IO0 IO0 K4 IO0 IO0 K5 VCC VCC K22 VSSQ VSSQ K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L1 GND GND L12 GND GND L13 GND GND L14 GND GND<
J22
J23
J24 VSSQ VSSQ J25 VSSQ VSSQ J26 NC CMSER_B K1 IO0 IO0 K2 IO0 IO0 K3 IO0 IO0 K4 IO0 IO0 K5 VCC VCC K22 VSSQ VSSQ K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L1 GND GND L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L16 GND GND
J25
J26
K1 IO0 IO0 K2 IO0 IO0 K3 IO0 IO0 K4 IO0 IO0 K5 VCC VCC K22 VSSQ VSSQ K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L1 GND GND L12 GND GND L13 GND GND L14 GND GND L14 GND GND L15 GND GND
K1 IO0 IO0 K2 IO0 IO0 K3 IO0 IO0 K4 IO0 IO0 K5 VCC VCC K22 VSSQ VSSQ K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L1 GND GND L12 GND GND L13 GND GND L14 GND GND L14 GND GND L15 GND GND
K3 IO0 IO0 K4 IO0 IO0 K5 VCC VCC K22 VSSQ VSSQ K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L16 GND GND
K4 IO0 IO0 K5 VCC VCC K22 VSSQ VSSQ K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L1 GND GND L12 GND GND L13 GND GND L14 GND GND L14 GND GND L15 GND GND
K5 VCC VCC K22 VSSQ VSSQ K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L14 GND GND L15 GND GND
K22 VSSQ VSSQ K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L1 GND GND L12 GND GND L13 GND GND L14 GND GND L14 GND GND L15 GND GND
K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L14 GND GND L15 GND GND
K23 VSSQ VSSQ K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L15 GND GND
K24 VSSQ VSSQ K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L15 GND GND
K25 NC OUTN_B K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L16 GND GND
K26 NC OUTP_B L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L16 GND GND
L1 IO0 IO0 L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND
L2 IO0 IO0 L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L40 GND GND
L3 IO0 IO0 L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L40 GND GND
L4 GND GND L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L40 GND GND
L5 IO0 IO0 L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND
L11 GND GND L12 GND GND L13 GND GND L14 GND GND L15 GND GND L16 GND GND
L13 GND GND L14 GND GND L15 GND GND
L14 GND GND L15 GND GND
L15 GND GND
L 40 ONDU
L 40
L22 NC VDDQ
L23 NC VCCQ
L24 NC VCCQ
L25 NC VCCQ
L26 NC VCCQ
M1 IO0 IO0
M2 IO/VREF0 IO/VREF0
M3 IO0 IO0
M4 GND GND
M5 IO0 IO0
M11 GND GND
M12 GND GND
M13 GND GND

Pin	25G01K100	25G02K100
M14	GND	GND
M15	GND	GND
M16	GND	GND
M22	SD	SD
M23	RXCN1	RXCN1
M24	RXCP1	RXCP1
M25	RXCN2	RXCN2
M26	RXCP2	RXCP2
N1	VCC	VCC
N2	IO0	100
N3	IO0	100
N4	GND	GND
N5	IO/VREF0	IO/VREF0
N11	GND	GND
N12	GND	GND
N13	GND	GND
N14	GND	GND
N15	GND	GND
N16	GND	GND
N22	NC	VDDQ
N23	VCCQ	VCCQ
N24	VCCQ	VCCQ
N25	VCCQ	VCCQ
N26	VCCQ	VCCQ
P1	IO1	IO1
P2	IO1	IO1
P3	IO1	IO1
P4	IO1	IO1
P5	IO0	100
P11	GND	GND
P12	GND	GND
P13	GND	GND
P14	GND	GND
P15	GND	GND
P16	GND	GND
P22	NC	NC
P23	VSSQ	VSSQ
P24	VSSQ	VSSQ
P25	INP	INP
P26	INN	INN
R1	IO1	IO1

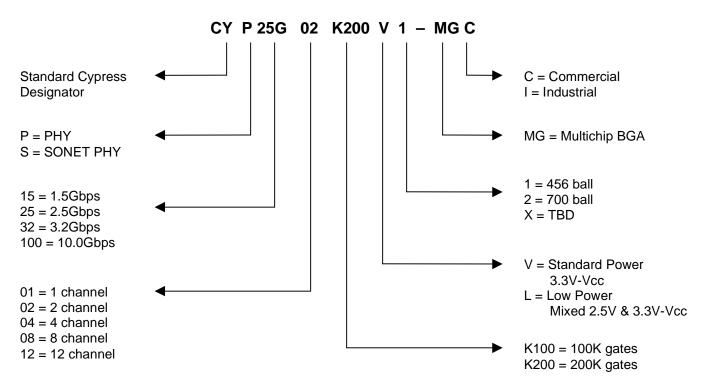
456-Ball BGA Pin Table (continued)

Pin	25G01K100	25G02K100
R2	IO1	IO1
R3	IO1	IO1
R4	VCCO1	VCCO1
R5	GND	GNDO
R11	GND	GND
R12	GND	GND
R13	GND	GND
R14	GND	GND
R15	GND	GND
R16	GND	GND
R22	NC	NC
R23	VSSQ	VSSQ
R24	VSSQ	VSSQ
R25	VSSQ	VSSQ
R26	CMSER	CMSER
T1	IO/VREF1	IO/VREF1
T2	IO/VREF1	IO/VREF1
Т3	IO1	IO1
T4	IO1	IO1
T5	IO1	IO1
T11	GND	GND
T12	GND	GND
T13	GND	GND
T14	GND	GND
T15	GND	GND
T16	GND	GND
T22	VSSQ	VSSQ
T23	VSSQ	VSSQ
T24	VSSQ	VSSQ
T25	OUTP	OUTP
T26	OUTN	OUTN
U1	IO1	IO1
U2	IO1	IO1
U3	IO1	IO1
U4	GND	GND
U5	GND	GND
U22	NC	VDDQ
U23	VCCQ	VCCQ
U24	VCCQ	VCCQ
U25	VCCQ	VCCQ
U26	VCCQ	VCCQ

V1 IO1 IO1 V2 IO1 IO1 V3 IO/VREF1 IO/VREF1 V4 IO1 IO1 V5 GND GND V22 REFCLKP REFCLKP V23 VCCO4 VCCO4 V24 IO4 IO4 V25 IO4 IO\$ V26 VCCO4 VCCO4 W1 IO1 IO1 W2 IO1 IO1 W3 IO1 IO1 W3 IO1 IO1 W4 IO1 IO1 W5 GND GND W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y22 IO4	Pin	25G01K100	25G02K100	
V3	V1	IO1	IO1	
V4	V2	IO1	IO1	
V5 GND GND V22 REFCLKP REFCLKP V23 VCCO4 VCCO4 V24 IO4 IO4 V25 IO4 IO\$ V26 VCCO4 VCCO4 W1 IO1 IO1 W2 IO1 IO1 W3 IO1 IO1 W4 IO1 IO1 W5 GND GND W20 REFCLKN REFCLKN W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y25 IO4 IO4 Y25 IO4 IO4 Y25 IO4 IO4 Y26 IO/VRE	V3	IO/VREF1	IO/VREF1	
V22 REFCLKP REFCLKP V23 VCCO4 VCCO4 V24 IO4 IO4 V25 IO4 IO\$ V26 VCCO4 VCCO4 W1 IO1 IO1 W2 IO1 IO1 W3 IO1 IO1 W4 IO1 IO1 W5 GND GND W20 REFCLKN REFCLKN W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y25 IO4 IO4 Y25 IO4 IO4 Y25 IO4 IO4 Y26 IO/VREF4 IO1 AA1	V4	IO1	IO1	
V23 VCCO4 VCCO4 V24 IO4 IO4 V25 IO4 IO\$ V26 VCCO4 VCCO4 W1 IO1 IO1 W2 IO1 IO1 W3 IO1 IO1 W3 IO1 IO1 W4 IO1 IO1 W5 GND GND W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 AA1 IO1	V5	GND	GND	
V24 IO4 IO4 V25 IO4 IO\$ V26 VCCO4 VCCO4 W1 IO1 IO1 W2 IO1 IO1 W3 IO1 IO1 W4 IO1 IO1 W5 GND GND W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y25 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO4 <	V22	REFCLKP		
V25 IO4 IO\$ V26 VCCO4 VCCO4 W1 IO1 IO1 W2 IO1 IO1 W3 IO1 IO1 W4 IO1 IO1 W5 GND GND W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y25 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1	V23	VCCO4	VCCO4	
V26 VCCO4 VCCO4 W1 IO1 IO1 W2 IO1 IO1 W3 IO1 IO1 W4 IO1 IO1 W5 GND GND W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1	V24	IO4	104	
W1	V25	IO4	IO\$	
W2	V26	VCCO4	VCCO4	
W3	W1	IO1	IO1	
W4	W2	IO1	IO1	
W5	W3	IO1	IO1	
W5 GND GND W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 I	W4	IO1		
W22 REFCLKN REFCLKN W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 NC AA26 IO4 NC	W5	GND		
W23 VCCO4 VCCO4 W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 NC AA26 IO4 NC	W22	REFCLKN		
W24 IO4 IO4 W25 IO4 IO4 W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 NC AA26 IO4 NC	W23	VCCO4		
W26	W24	IO4		
W26 IO4 IO4 Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	W25	IO4	IO4	
Y1 IO1 IO1 Y2 IO1 IO1 Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	W26	IO4	104	
Y3 VCEP VCEP Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y1	IO1		
Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y2	IO1	IO1	
Y4 IO1 IO1 Y5 IO1 IO1 Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y3	VCEP	VCEP	
Y22 IO4 IO4 Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y4	IO1		
Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y5	IO1	IO1	
Y23 VCEP VCEP Y24 IO4 IO4 Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y22	IO4	IO4	
Y25 IO4 IO1 Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y23	VCEP		
Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y24	IO4	IO4	
Y26 IO/VREF4 IO1 AA1 IO1 IO1 AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y25	IO4	IO1	
AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	Y26	IO/VREF4	IO1	
AA2 IO1 IO1 AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	AA1	IO1	IO1	
AA3 VCCO1 VCCO1 AA4 IO/VREF1 IO/VREF1 AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	AA2	IO1	IO1	
AA5 GND GNDO AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	AA3	VCCO1	VCCO1	
AA22 IO4 IO4 AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	AA4	IO/VREF1	IO/VREF1	
AA23 NC VCC AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	AA5	GND	GNDO	
AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	AA22	IO4	IO4	
AA24 IO4 IO4 AA25 IO4 NC AA26 IO4 NC	AA23	NC	VCC	
AA26 IO4 NC	AA24	IO4		
AA26 IO4 NC	AA25	IO4		
AD4 CND	AA26	IO4		
	AB1	GND		

456-Ball BGA Pin Table (continued)

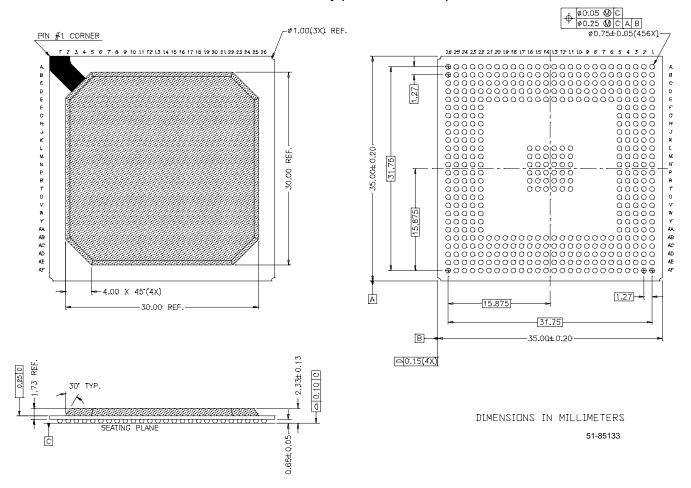
Pin	25G01K100	25G02K100	
AB2	CDONE	CDONE	
AB3	VCCO1	VCCO1	
AB4	IO1	IO1	
AB5	IO2	IO2	
AB6	GND	GND	
AB7	GND	GND	
AB8	GND	GND	
AB9	IO2	IO2	
AB10	IO/VREF2	IO/VREF2	
AB11	IO2	IO2	
AB12	IO2	IO2	
AB13	IO3	IO3	
AB14	IO3	IO3	
AB15	GND	GND	
AB16	IO3	IO3	
AB17	GND	GND	
AB18	GND	GND	
AB19	GND	GND	
AB20	IO3	IO3	
AB21	IO3	IO3	
AB22	IO3	IO3	
AB23	104	IO4	
AB24	104	IO4	
AB25	IO4	NC	
AB26	IO4	NC	
AC1	CDATA	CDATA	
AC2	RECONFIG	RECONFIG	
AC3	102	IO2	
AC4	102	IO2	
AC5	VCCFG	VCCFG	
AC6	VCCO2	VCCO2	
AC7	VCCO2	VCCO2	
AC8	VCCO2	VCCO2	
AC9	VCCO2	VCCO2	
AC10	NC	VCC	
AC11	IO2	IO2	
AC12	IO2	IO2	
AC13	IO2	IO2	
AC14	VDDQ	VDDQ	
AC15	VCCO3	VCCO3	
AC16	VCCO3	VCCO3	


AC17 IO3 IO3 AC18 IO3 IO3 AC19 IO/VREF3 IO/VREF3 AC20 NC VCC AC21 NC VDDQ AC22 VCCO4 VCCO4 AC23 IO/VREF4 IO/VREF4 AC24 IO/VREF4 IO/VREF4		
AC19 IO/VREF3 IO/VREF3 AC20 NC VCC AC21 NC VDDQ AC22 VCCO4 VCCO4 AC23 IO/VREF4 IO/VREF4		
AC20 NC VCC AC21 NC VDDQ AC22 VCCO4 VCCO4 AC23 IO/VREF4 IO/VREF4		
AC21 NC VDDQ AC22 VCCO4 VCCO4 AC23 IO/VREF4 IO/VREF4		
AC22 VCCO4 VCCO4 AC23 IO/VREF4 IO/VREF4		
AC23 IO/VREF4 IO/VREF4		
10/VICE1 4		
AC24 IO/VREF4 IOA/REF4		
AC25 IO4 NC		
AC26 IO4 NC		
AD1 CRST CRST		
AD2 CCLK CCLK		
AD3 IO2 IO2		
AD4 IO2 IO2		
AD5 IO2 IO2		
AD6 IO2 IO2		
AD7 IO2 IO2		
AD8 NC VCC		
AD9 VDDQ VDDQ		
AD10 VDDQ VDDQ		
AD11 IO2 IO2		
AD12 IO2 IO2		
AD13 IO/VREF2 IO/VREF2		
AD14 IO2 IO2		
AD15 IO3 IO3		
AD16 IO3 IO3		
AD17 IO3 IO3		
AD18 IO3 IO3		
AD19 IO3 IO3		
AD20 VCC VCC		
AD21 VCCO3 VCCO3		
AD22 VCCO3 VCCO3		
AD23 IO/VREF3 IO/VREF3		
AD24 IO3 IO3		
AD25 IO3 IO3		
AD26 IO3 IO3		
AE1 CCE CCE		
AE2 MSEL MSEL		
AE3 IO/VREF2 IO/VREF2	IO/VREF2	
AE4 IO2 IO2		
AE5 IO/VREF2 IO/VREF2		

Pin	25G01K100	25G02K100	
AE6	IO2	IO2	
AE7	IO2	IO2	
AE8	IO2	IO2	
AE9	IO2	IO2	
AE10	IO2	IO2	
AE11	IO/VREF2	IO/VREF2	
AE12	IO2	IO2	
AE13	IO2	IO2	
AE14	IO2	IO2	
AE15	IO3	IO3	
AE16	IO3	IO3	
AE17	IO3	IO3	
AE18	IO3	IO3	
AE19	IO3	IO3	
AE20	IO3	IO3	
AE21	IO/VREF3	IO/VREF3	
AE22	IO3	IO3	
AE23	IO3	IO3	
AE24	IO3	IO3	
AE25	IO/VREF3	IO/VREF3	
AE26	IO3	IO3	
AF1	GND	GND	
AF2	IO2	IO2	
AF3	IO2	IO2	
AF4	IO2	IO2	
AF5	IO2	IO2	
AF6	IO2	IO2	
AF7	IO/VREF2	IO/VREF2	
AF8	IO2	IO2	
AF9	102	102	
AF10	IO2	IO2	
AF11	IO2	IO2	
AF12	IO2	IO2	
AF13	VCC	VCC	
AF14	IO/VREF3	IO/VREF3	
AF15	IO3	IO3	
AF16	IO3	IO3	
AF17	IO/VREF3	IO/VREF3	
AF18	IO3	IO3	
AF19	IO3	IO3	
AF20	IO3	IO3	

456-Ball BGA Pin Table (continued)

Pin	25G01K100	25G02K100
AF21	IO3	IO3
AF22	IO3	IO3
AF23	IO3	IO3
AF24	IO3	IO3
AF25	IO3	IO3
AF26	GND	GND



Ordering Information

Device	Channels & Link Speed	Ordering Code	Package Name	Package Type	Operating Range
25G01K100	1 x 2.5 Gbps	CYP25G01K100V1-MGC	456MGC	456-Ball Ball Grid Array	Commercial
	1 x 2.5 Gbps	CYS25G01K100V1-MGC	456MGC	456-Ball Ball Grid Array	
25G02K100	2 x 2.5 Gbps	CYP25G02K100V1-MGC	456MGC	456-Ball Ball Grid Array	
	2 x 2.5 Gbps	CYS25G02K100V1-MGC	456MGC	456-Ball Ball Grid Array	
15G04K100	4 x 0.2 - 1.5 Gbps	CYP15G04K100V1-MGC	456MGC	456-Ball Ball Grid Array	Commercial
15G04K200	4 x 0.2 - 1.5 Gbps	CYP15G04K200V2-MGC	700MGC	700-Ball Ball Grid Array	Industrial
15G08K200	8 x 0.2 - 1.5 Gbps	CYP15G08K200V2-MGC	700MGC	700-Ball Ball Grid Array	Commercial

Package Diagrams

456-Lead Ball Grid Array (35 x 35 x 2.33 mm) BG456

NoBL, Programmable Interconnect Matrix, PIM, Spread Aware, *Warp*, AnyVolt, Self-Boot, In-System Reprogrammable, ISR, Programmable Serial Interface, and PSI are trademarks of Cypress Semiconductor Corporation.

ZBT is a trademark of IDT. InfiniBand is a trademark of the InfiniBand Trade Association. QDR is a trademark of Micron, IDT, and Cypress Semiconductor Corporation.

Windows is a registered trademark of Microsoft Corporation.

SpeedWave, and ViewDraw are trademarks of ViewLogic.

Document Title: Programmable Serial Interface Device Family (High Speed) Programmable Bandwidth Document Number: 38-02021				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106745	05/25/01	SZV	Change from Spec #38-01093 to 38-02021
*A	107726	06/04/01	MHW	Updated Marketing Part Numbers
*B	109064	09/07/01	MHW	Added x8 feature in PLL and CHAR data